Мы уже писали, что технологии Big Data ориентированы на работу с большими данными, а не множеством маленьких. Сегодня рассмотрим подробнее, почему Apache Hadoop, Spark и основанные на HDFS NoSQL-СУБД Hive и HBase плохо работают с большим количеством маленьких файлов, а также как это исправить. Почему HDFS плохо работает со множеством...
В рамках обучения аналитиков данных, дата-инженеров и разработчиков распределенных приложений, сегодня поговорим про материализованные представления в Apache Hive. Что это такое, зачем нужно и как реализуется в самом популярном NoSQL-хранилище стека SQL-on-Hadoop. Что такое материализованное представление и зачем это надо в аналитике больших данных: краткий ликбез Аналитика данных включает в...
Недавно мы писали про Lakesoul – новое унифицированное решение для хранения потоковых и пакетных таблиц, которое реализует архитектуру данных LakeHouse. Сегодня заглянем под капот этого унифицированного механизма на базе Apache Spark и разберемся с преимуществами его последнего релиза. Как работает LakeSoul: краткий обзор Напомним, LakeSoul от команды DMetaSoul представляет собой...
Сегодня рассмотрим новое унифицированное решение для хранения потоковых и пакетных таблиц, созданное на основе Apache Spark. Что такое Lakesoul, чем это лучше Apache Iceberg, Hudi и Deta Lake. Также разберем, в чем конкурентные преимущества этого табличного хранилища по сравнению с этими форматами открытых таблиц, включая поддержку upsert, управление метаданными и...
Чтобы добавить еще больше практики в наши курсы для дата-инженеров и разработчиков распределенных приложений, сегодня рассмотрим тонкости сериализации данных в Apache Hive. Читайте далее, как этот популярный SQL-on-Hadoop инструмент обрабатывает данные из HDFS, что такое SerDe и как написать собственный сериализатор/десериализатор. Сериализация и десериализация данных в Apache Hive В настоящее...
В этой статье для обучения дата-инженеров и аналитиков данных заглянем под капот Apache Hive, чтобы разобраться с механизмов LLAP. Как этот движок повышает производительность популярного SQL-on-Hadoop инструмента, поддерживая длительные процессы на одних и тех же ресурсах для кэширования и аналитической обработки больших данных. Что такое LLAP в Apache Hive и...
Сегодня рассмотрим несколько полезных приемов по работе с Apache Hive, которые пригодятся инженеру данных и специалисту по Data Science в проектах аналитики больших данных. Как разделить и сегментировать таблицы, зачем изменять значение конфигурации памяти этапов MapReduce, чем полезна автоматическая обработка асимметрии данных и еще пара лайфхаков для ускорения выполнения SQL-запросов...
В апреле 2022 года вышел очередной минорный релиз Apache Hive, который работает с Hadoop версии 3. Рассмотрим основные улучшения и исправленные ошибки этого обновления, которые пригодятся дата-инженеру и разработчику распределенных приложений аналитики больших данных. Исправленные ошибки В апрельском выпуске популярного NoSQL-хранилища Apache Hive, которое реализует возможность обращения к данным в...
Для обучения дата-инженеров и аналитиков данных, сегодня рассмотрим приемы оптимизации SQL-запросов в Apache Hive, выполняемых движком Tez. Каким образом Tez рассчитывает оптимальное количество редукторов, зачем включать индексацию фильтров, как статистика таблицы помогает улучшить план выполнения запросов и что за конфигурации нужно менять. 3 движка выполнения запросов в Apache Hive Напомним,...
В этой статье для обучения дата-инженеров, аналитиков данных и разработчиков распределенных приложений рассмотрим один из методов оптимизации SQL-запросов в Apache Hive. Что такое оператор MapJoin, в каких условиях и как он работает, чем выгоден для HiveQL-запросов и почему при его выполнении с движком Tez может возникнуть нехватка памяти. Что такое...