Бакетирование vs партиционирование в Apache Hive и Spark

В этой статье рассмотрим 2 способа физической группировки данных для ускорения последующей обработки в Apache Hive и Spark: партиционирование и бакетирование. Чем они отличаются друг от друга, что между ними общего и какой рост производительности дает каждый из методов в зависимости от задач аналитики больших данных средствами Spark SQL. Еще...

Apache Iceberg для Data Lake: что это такое, зачем нужно и как работает

В недавней статье про преимущества хранилища метаданных Apache Hive и другие плюсы этого популярного инструмента SQL-on-Hadoop, мы упоминали формат открытых таблиц Iceberg как альтернативу для хранения огромных наборов аналитических данных. Он добавляет высокопроизводительные SQL-подобные таблицы в вычислительные механизмы Spark, Trino, Presto, Flink и Hive. Сегодня рассмотрим подробнее, что такое Apache Iceberg и...

Перспективы Apache Hive: развитие или забвение?

Появившись более 10 лет назад, Apache Hive до сих пор является самым популярным инструментом стека SQL-on-Hadoop и активно используется для аналитики больших данных. Однако, технологии Big Data постоянно развиваются: Spark все чаще заменяет Hadoop MapReduce, а вместо HDFS все чаще используются объектные облачные хранилища: AWS S3, Delta Lake, Apache Ozone...

Еще пара примеров по Apache Hive и Spark: безопасный доступ и реализация SCD

В этой статье для разработчиков распределенных приложений Apache Spark, администраторов SQL-on-Hadoop и дата-аналитиков рассмотрим особенности аутентификации удаленного пользователя, а также отслеживание измененных данных в таблицах Apache Hive. Читайте далее, зачем ограничивать доступ к keytab-файлу в кластерах с поддержкой защищенного протокола Kerberos, а также как реализовать отслеживание медленно меняющихся измерений в...

От JDBC-подключения до SQL-запросов: пара примеров по Apache Hive, HBase и Spark

В рамках курсов по Apache Hadoop для дата-аналитиков и инженеров данных сегодня рассмотрим пару практических примеров работы с популярным SQL-on-Hadoop инструментом этой экосистемы. Читайте далее, как настроить соединение удаленного сервера Apache Hive к Spark-приложению через JDBC и решить проблему запроса таблицы HBase в Hive вместо повторной репликации данных. Подключение удаленного...

Что такое Erasure Coding и как это устроено: под капотом Apache Hadoop HDFS 3.3.1

Недавно мы рассказывали про новые функции свежего релиза Apache Hadoop 3.3.1. Сегодня разберем подробнее, что такое Erasure Coding и как эта технология кодирования со стиранием экономит место в распределенной файловой системе HDFS. Также заглянем внутрь EC и рассмотрим, чем алгоритм Рида-Соломона лучше ассоциативной операции XOR для обеспечения отказоустойчивости хранилища больших...

Зачем вам Beekeeper или как очистить метаданные таблицы Apache Hive

Сегодня рассмотрим, что такое Beekeeper и как этот сервис помогает администраторам Hadoop и пользователям Apache Hive очищать метаданные этого NoSQL-хранилища. Читайте далее, зачем удалять устаревшие пути из Metastore и как настроить конфигурацию Hive-таблиц для автоматического прослушивания событий их изменения. Для чего очищать потерянные метаданные в Apache Hive Напомним, Apache Hive...

Зачем Apache Hive внешняя база данных для MetaStore: смотрим на примере Arenadata Hadoop 2.1.4 со Spark 3

В июле 2021 года «Аренадата Софтвер», российская ИТ-компания разработчик отечественных решений для хранения и аналитики больших данных, представила минорный релиз корпоративного дистрибутива на базе Apache Hadoop — Arenadata Hadoop 2.1.4. Главными фишками этого выпуска стало наличие 3-й версии Apache Spark и External PostgreSQL для Hive MetaStore. Сегодня рассмотрим, что именно...

Новый релиз Apache Hadoop 3.3.1: ТОП-15 обновлений

Постоянно обновляя наши курсы по Apache Hadoop для администраторов кластеров и инженеров данных, сегодня рассмотрим главные новинки июньского релиза 2021. Читайте далее, как поддержка Erasure Coding сэкономит место в HDFS, зачем обновляться до 8-ой версии Java, чем хорош YARN Timeline Service v.2, как повысить надежность кластера Hadoop еще больше и...

Под капотом кластера Apache Hadoop: как работает YARN, где он может сломаться и что чинить

Продолжая обучение основам Apache Hadoop для начинающих администраторов, сегодня рассмотрим архитектуру и принципы работы YARN в кластере. Также разберем, какие отказы могут случиться на каждом из его компонентов и как Resource Manager системы YARN обеспечивает высокую доступность кластера Apache Hadoop. Зачем Apache Hadoop нужен YARN и как он работает Поскольку...

Основы Hadoop HDFS для начинающих администраторов: как вывести узел из кластера без потери данных

При том, что Apache Hadoop – высоконадежная экосистема хранения и аналитики больших данных, отказы случаются и в ней. Сегодня в рамках обучения начинающих администраторов и разработчиков Hadoop разберем, какие типы сбоев возможны в распределенной файловой системе HDFS и механизмы их предупреждения, а также рассмотрим процедуру вывода узлов из кластера для...

Tez vs Spark: что выбрать для Apache Hive

Вчера мы упоминали, что использование Spark или Tez в качестве движка исполнения SQL-запросов в Apache Hive вместо классического Hadoop MapReduce намного ускоряет аналитику больших данных. Сегодня рассмотрим подробнее, чем отличаются эти механизмы и какой из них выбирать в разных случаях использования. Что такое Apache Tez и как он работает с...

Как ускорить SQL-запросы в Apache Hive: ТОП-5 методов оптимизации

Apache Hive – востребованный инструмент класса SQL-on-Hadoop, который также активно используется в работе с фреймворком Spark. Поэтому сегодня разберем важную тему из обучения дата-инженеров и аналитиков больших данных про оптимизацию SQL-запросов в этом NoSQL-хранилище. Смотрите, чем полезна векторизация HiveQL-операций, какие форматы файлов обрабатываются быстрее, почему денормализация данных в Hive –...

Лучшие практики разработки Big Data pipeline’ов в Apache Airflow: 10 советов дата-инженеру

В рамках практического обучения дата-инженеров сегодня мы собрали 10 лучших практик проектирования конвейеров обработки данных в рамках Apache AirFlow, которые касаются не только особенностей этого фреймворка. Также рассмотрим, какие принципы разработки ПО особенно полезны для инженерии больших данных с Apache AirFlow. ТОП-10 рекомендаций дата-инженеру для настройки Apache Airflow и не...

Почему stateful-приложения Apache Flink падают в AWS: RocksDB и IOPS облачных SSD

Продолжая разбирать особенности разработки потоковых приложений Apache Flink, сегодня рассмотрим проблему падения пропускной способности задания из-за встроенного хранилища состояний RocksDB и ее зависимость от производительности дисков. Вас ждет настоящая детективная история о том, как важно заглядывать под капот облачных кластеров и настраивать конфигурации своих stateful-приложений потоковой аналитики больших данных с...

RocksDB как хранилище состояний для stateful-приложений Apache Flink

Мы уже рассказывали, что приложения Kafka Streams используют RocksDB в качестве хранилища состояний. Сегодня рассмотрим, как это key-value NoSQL-СУБД используется для разработки stateful-приложений Apache Flink. Читайте далее о преимуществах и особенностях применения RocksDB для управления состоянием Flink-приложения, а также заблуждениях, связанных с этими фреймворками. 3 бэкенда Apache Flink для хранения...

Зачем нужны коммитеры S3A: решаем проблемы совместимости Amazon S3 с Hadoop HDFS

В поддержку курса Hadoop для инженеров данных сегодня разберем, в чем проблема безопасной отправки заданий и файлов в облачное хранилище Amazon S3 и как ее решить. Читайте далее, почему AWS S3 не дает гарантий согласованности как HDFS, из-за чего S3Guard не обеспечивает транзакционность и как настроить коммиттеры S3A для Spark...

Apache Hadoop 3.2.2 – свежий релиз 2021: краткий обзор главной технологии Big Data

Месяц назад, в начале января 2021 года вышел новый релиз Apache Hadoop 3.2.2. Читайте далее, чего ждать от самой главной технологии Big Data, какие ошибки исправлены, зачем внесены изменения и кому они будут особенно полезны. 7 главных обновлений Apache Hadoop 3.2.2 Этот второй выпуск версии 3.2 содержит 516 исправлений ошибок,...

Что не так с real-time обработкой транзакций в конвейере Apache Kafka-Spark Streaming: 3 проблемы и способы их решения

В этой статье рассмотрим особенности совместного использования Apache Kafka и Spark Streaming для обработки финансовых транзакций в режиме онлайн. Читайте далее про типовые кейсы практического применения конвейера аналитики больших данных на базе Kafka и Spark, а также проблемы или технологические особенности такой Big Data системы и пути обхода этих ограничений....

Безопасность + надежность: чем хорош транзакционный протокол фиксации Spark-заданий от Databricks

Продолжая разговор про фиксацию заданий Apache Spark при работе с облачными хранилищами больших данных, сегодня подробнее рассмотрим, насколько эффективны commit-протоколы экосистемы Hadoop, предоставляемые по умолчанию, и почему известный разработчик Big Data решений, компания Databricks, разработала собственный алгоритм. Читайте далее про сравнение протоколов фиксации заданий в Spark-приложениях: результаты оценки производительности и...