Мы уже писали про динамическое изменение правил фильтрации без перезапуска Flink-приложений. В продолжение этой темы в рамках продвижения нашего нового курса по потоковой обработке данных помощью Apache Flink, сегодня рассмотрим, как избежать неравномерного распределения данных во время выполнения программы. Больше 3-х не собираться: бизнес-правила и динамика разделения данных Перекос или...
Современные ML-системы представляют собой сложные комплексные платформы из множества компонентов, одним из которых является хранилище фичей для моделей машинного обучения. Индийская gamedev-компания Dream11 делится своим опытом, как построить такое Feature Store на базе Apache HBase с Phoenix, а также RonDB и Kafka. Что такое хранилище фичей и зачем это Dream11...
Пример выявления финансового мошенничества при скимминге банковских карт в банкоматах с помощью технологий Big Data. Как Apache Kafka, Flink и HBase помогут обнаружить злоумышленников в режиме реального времени. Что такое скимминг, как это работает и чем опасно Скимминг является одним из частых видов мошенничества с банковскими картами, представляющий собой считывание...
Как изменять правила фильтрации данных без перезапуска потокового Flink-приложения: практический пример для разработчиков и дата-инженеров. Чем подход с ключами состояний отличается от широковещательных соединений, каковы достоинства и недостатки этих альтернатив. Фильтрация данных в статике и динамике Практически каждая платформа потоковой передачи событий позволяет использовать фильтрацию операторов для отбора данных согласно...
Сегодня рассмотрим наиболее распространенные в MLOps стратегии развертывания, т.е. подходы к внедрению моделей машинного обучения в производство. Выбор стратегии зависит от бизнес-требований и от контекста применения результатов ML-моделирования. Какие бывают стратегии и как они реализуются: краткий ликбез с примерами для ML-инженеров и MLOps-специалистов. Пакетное прогнозирование и веб-сервисы для MLOps Это...
В этой статье для инженеров данных и разработчиков Hadoop-приложений рассмотрим опыт индийской компании Wynk по применению Apache Flink в качестве средства потоковой аналитики больших данных пользовательского поведения в мобильных приложениях прослушивания музыки. Особое внимание уделим вопросу формирования и обработки пользовательских сессий. Постановка задачи и выбор решения Wynk Music является одним...
Добавляя в наши курсы для дата-инженеров интересные кейсы, сегодня рассмотрим, как реализовать Лямбда-архитектуру для комплексной аналитики больших данных с помощью Apache Flink, Kafka и Cassandra на примере системы интернета вещей. Объединение пакетной и потоковой обработки данных средствами Flink API и библиотек этого фреймворка. Постановка задачи на примере IoT-системы Несмотря на...
Чтобы сделать наши курсы для дата-инженеров еще более интересными, сегодня рассмотрим практический пример построения инфраструктуры для автоматической диагностики и исправления ошибок пакетной и потоковой обработки данных в Netflix. Комплексная система на базе Apache Spark, Kafka, Flink, Druid, сервисов AWS и других технологий Big Data. Предыстория: зачем Netflix разработал Pensive Обработка...
В этой статье для дата-инженеров и разработчиков распределенных приложений разберем кейс американской ИТ-компании FiscalNote, которая использует Apache Flink в качестве движка потоковой обработки информации со сторонних веб-сайтов. Трудности сериализации сообщений из очередей RabbitMQ с разной скоростью поступления Big Data и способы их обхода. Постановка задачи: требования для Flink-приложения FiscalNote специализируется...
Разбираемся с механизмами отказоустойчивости Flink-приложений. Что такое контрольные точки (Checkpoint), чем они отличаются от точек сохранения (Savepoint) и что между ними общего. А также при чем здесь snapshot, что выбирать в разных случаях и как это использовать для отказоустойчивости stateful-приложений Apache Flink. Snapshot как механизм обеспечения отказоустойчивости приложений Apache Flink...
Что такое состояния в приложениях Apache Flink, каких видов они бывают, как ими управлять и зачем это нужно: основы разработки stateful-заданий и API DataStream. Чем состояние с ключом отличается от оператора состояния и почему первый чаще используется на практике. Состояния в Apache Flink Apache Flink поддерживает как stateful-, так и...
Ранее мы писали о том, как фотохостинг Pinterest с помощью новой версии Apache Flink 1.14, которая вышла в конце сентября 2021 года, объединяет пакетную и потоковую аналитику больших данных, чтобы еще лучше обслуживать более 475 миллионов своих пользователей. Сегодня поговорим про контроль сетевого трафика и синхронизацию источников данных через генерацию...
Сегодня рассмотрим, как индийская ИТ-компания Razorpay с помощью Apache Flink и Kafka свела к минимуму время простоя своего главного продукта - платежного шлюза для интернет-магазинов. Как всего 2 задания Flink могут быстро обнаруживать простои более 50 когорт событий на уровне платежного шлюза и 200+ когорт разных интернет-магазинов. Работать нельзя остановиться:...
Недавно мы писали, что в новой версии Apache Flink 1.14, которая вышла в конце сентября 2021 года, сделаны попытки объединения потоковой и пакетной парадигм обработки данных. Сегодня рассмотрим, как подобное стремление к унификации реализуется на практике дата-инженерами фотохостинга Pinterest, которые используют Apache Flink как универсальный инструмент аналитики больших данных в...
29 сентября 2021 года вышла новая версия популярного Big Data фреймворка Apache Flink. Мы сделали краткий обзор главных улучшений свежего релиза 1.14 общедоступного дистрибутива, а также его коммерциализации в Ververica Platform 2.6. Узнайте, как потоковая обработка и аналитики больших данных с Apache Flink станет еще проще и эффективнее. Исправление ошибок...
Продолжая недавний разговор про потоковую передачу событий и соответствующие Big Data инструменты, сегодня рассмотрим не отдельные фреймворки обработки данных в режиме реального времени, а комплексные платформы, которые объединяют сразу несколько технологий для интерактивной аналитики больших данных. Вас ждет краткий обзор Cloudera Streaming Analytics, Materialize и Rockset: что это такое, как...
В продолжение недавней статьи для дата-инженеров про альтернативные платформы потоковой передачи событий вместо Apache Kafka, сегодня рассмотрим пример аналитики больших данных средствами Flink SQL, записи результатов в Elasticsearch и их визуализации в Kibana. Читайте далее, чем Redpanda отличается от Kafka, а Flink – от Apache Spark с точки зрения потоковой...
Чтобы добавить в наши курсы для дата-инженеров по технологиям Apache Kafka, Spark, AirFlow, NiFi, Flink и Greenplum, еще больше практических примеров, сегодня разберем кейс ритейлера Леруа Мерлен. Читайте далее, как сотрудники российского отделения этой международной компании интегрировали в единую платформу более 350 реляционных СУБД и NoSQL-источников с помощью CDC-подхода на...
Сегодня рассмотрим пару кейсов по использованию Apache Flink в качестве основного фреймворка пакетной и потоковой аналитики больших данных. Читайте далее, как фото-хостинг Pinterest построил вокруг Flink собственную инфраструктуру работы с изображениями в реальном времени, а китайский ритейл-гигант Alibaba Group успешно обрабатывал 7 ТБ в секунду во время глобального дня шопинга....
При том, что Apache Airflow сегодня считается главным инструментом дата-инженерии, он далеко не единственное средство оркестрации пакетных заданий и построения конвейеров обработки больших данных. В рамках продвижения наших курсов для инженеров Big Data, сегодня рассмотрим, что такое Apache Hop, чем это отличается от AirFlow и где использовать эту платформу, а...