Управление перемешиванием данных во время выполнения Flink-приложений

Мы уже писали про динамическое изменение правил фильтрации без перезапуска Flink-приложений. В продолжение этой темы в рамках продвижения нашего нового курса по потоковой обработке данных  помощью Apache Flink, сегодня рассмотрим, как избежать неравномерного распределения данных во время выполнения программы. Больше 3-х не собираться: бизнес-правила и динамика разделения данных Перекос или...

Feature Store на Apache HBase с Phoenix, RonDB и Kafka: кейс Dream11

Современные ML-системы представляют собой сложные комплексные платформы из множества компонентов, одним из которых является хранилище фичей для моделей машинного обучения. Индийская gamedev-компания Dream11 делится своим опытом, как построить такое Feature Store на базе Apache HBase с Phoenix, а также RonDB и Kafka. Что такое хранилище фичей и зачем это Dream11...

Обнаружение мошенничества при скимминге банковских карт c Apache Kafka, Flink и HBase

Пример выявления финансового мошенничества  при скимминге банковских карт в банкоматах с помощью технологий Big Data. Как Apache Kafka, Flink и HBase помогут обнаружить злоумышленников в режиме реального времени. Что такое скимминг, как это работает и чем опасно Скимминг является одним из частых видов мошенничества с банковскими картами, представляющий собой считывание...

2 подхода к динамической фильтрации потоковых данных в Apache Flink

Как изменять правила фильтрации данных без перезапуска потокового Flink-приложения: практический пример для разработчиков и дата-инженеров. Чем подход с ключами состояний отличается от широковещательных соединений, каковы достоинства и недостатки этих альтернатив. Фильтрация данных в статике и динамике Практически каждая платформа потоковой передачи событий позволяет использовать фильтрацию операторов для отбора данных согласно...

Практический MLOps: 4 стратегии развертывания систем Machine Learning

Сегодня рассмотрим наиболее распространенные в MLOps стратегии развертывания, т.е. подходы к внедрению моделей машинного обучения в производство. Выбор стратегии зависит от бизнес-требований и от контекста применения результатов ML-моделирования. Какие бывают стратегии и как они реализуются: краткий ликбез с примерами для ML-инженеров и MLOps-специалистов. Пакетное прогнозирование и веб-сервисы для MLOps Это...

Потоковая аналитика пользовательских сеансов с Apache Flink на примере Wynk

В этой статье для инженеров данных и разработчиков Hadoop-приложений рассмотрим опыт индийской компании Wynk по применению Apache Flink в качестве средства потоковой аналитики больших данных пользовательского поведения в мобильных приложениях прослушивания музыки. Особое внимание уделим вопросу формирования и обработки пользовательских сессий. Постановка задачи и выбор решения Wynk Music является одним...

Лямбда-архитектура IoT-системы на Apache Kafka, Flink и Cassandra

Добавляя в наши курсы для дата-инженеров интересные кейсы, сегодня рассмотрим, как реализовать Лямбда-архитектуру для комплексной аналитики больших данных с помощью Apache Flink, Kafka и Cassandra на примере системы интернета вещей. Объединение пакетной и потоковой обработки данных средствами Flink API и библиотек этого фреймворка. Постановка задачи на примере IoT-системы Несмотря на...

Автоматическая диагностика и исправление сбоев в платформе данных Netflix c Apache Spark, Kafka, Flink и другими технологиями Big Data

Чтобы сделать наши курсы для дата-инженеров еще более интересными, сегодня рассмотрим практический пример построения инфраструктуры для автоматической диагностики и исправления ошибок пакетной и потоковой обработки данных в Netflix. Комплексная система на базе Apache Spark, Kafka, Flink, Druid, сервисов AWS и других технологий Big Data. Предыстория: зачем Netflix разработал Pensive Обработка...

Потоковый веб-парсинг на Apache Flink + RabbitMQ: кейс от дата-инженеров FiscalNote

В этой статье для дата-инженеров и разработчиков распределенных приложений разберем кейс американской ИТ-компании FiscalNote, которая использует Apache Flink в качестве движка потоковой обработки информации со сторонних веб-сайтов. Трудности сериализации сообщений из очередей RabbitMQ с разной скоростью поступления Big Data и способы их обхода. Постановка задачи: требования для Flink-приложения FiscalNote специализируется...

Savepoint vs Checkpoint в Apache Flink: сходства и отличия

Разбираемся с механизмами отказоустойчивости Flink-приложений. Что такое контрольные точки (Checkpoint), чем они отличаются от точек сохранения (Savepoint) и что между ними общего. А также при чем здесь snapshot, что выбирать в разных случаях и как это использовать для отказоустойчивости stateful-приложений Apache Flink. Snapshot как механизм обеспечения отказоустойчивости приложений Apache Flink...

Управление состояниями в Apache Flink: краткий ликбез

Что такое состояния в приложениях Apache Flink, каких видов они бывают, как ими управлять и зачем это нужно: основы разработки stateful-заданий и API DataStream. Чем состояние с ключом отличается от оператора состояния и почему первый чаще используется на практике. Состояния в Apache Flink Apache Flink поддерживает как stateful-, так и...

Потоки и пакеты: унифицированная аналитика больших данных c Apache Flink в Pinterest

Ранее мы писали о том, как фотохостинг Pinterest с помощью новой версии Apache Flink 1.14, которая вышла в конце сентября 2021 года, объединяет пакетную и потоковую аналитику больших данных, чтобы еще лучше обслуживать более 475 миллионов своих пользователей. Сегодня поговорим про контроль сетевого трафика и синхронизацию источников данных через генерацию...

Система обнаружения простоев онлайн-платежей на Apache Flink и Kafka: кейс Razorpay

Сегодня рассмотрим, как индийская ИТ-компания Razorpay с помощью Apache Flink и Kafka свела к минимуму время простоя своего главного продукта - платежного шлюза для интернет-магазинов. Как всего 2 задания Flink могут быстро обнаруживать простои более 50 когорт событий на уровне платежного шлюза и 200+ когорт разных интернет-магазинов. Работать нельзя остановиться:...

Один на всех: реализация единого API для унифицированной аналитики больших данных c Apache Flink и Kafka в Pinterest

Недавно мы писали, что в новой версии Apache Flink 1.14, которая вышла в конце сентября 2021 года, сделаны попытки объединения потоковой и пакетной парадигм обработки данных. Сегодня рассмотрим, как подобное стремление к унификации реализуется на практике дата-инженерами фотохостинга Pinterest, которые используют Apache Flink как универсальный инструмент аналитики больших данных в...

Apache Flink 1.14: что нового?

29 сентября 2021 года вышла новая версия популярного Big Data фреймворка Apache Flink. Мы сделали краткий обзор главных улучшений свежего релиза 1.14 общедоступного дистрибутива, а также его коммерциализации в Ververica Platform 2.6. Узнайте, как потоковая обработка и аналитики больших данных с Apache Flink станет еще проще и эффективнее. Исправление ошибок...

Не только Apache Kafka и Spark Streaming: 3 платформы потоковой аналитики больших данных

Продолжая недавний разговор про потоковую передачу событий и соответствующие Big Data инструменты, сегодня рассмотрим не отдельные фреймворки обработки данных в режиме реального времени, а комплексные платформы, которые объединяют сразу несколько технологий для интерактивной аналитики больших данных. Вас ждет краткий обзор Cloudera Streaming Analytics, Materialize и Rockset: что это такое, как...

Потоковая аналитика больших данных на Flink SQL и Redpanda вместо Apache Spark с Kafka

В продолжение недавней статьи для дата-инженеров про альтернативные платформы потоковой передачи событий вместо Apache Kafka, сегодня рассмотрим пример аналитики больших данных средствами Flink SQL, записи результатов в Elasticsearch и их визуализации в Kibana. Читайте далее, чем Redpanda отличается от Kafka, а Flink – от Apache Spark с точки зрения потоковой...

Платформа аналитики больших данных Леруа Мерлен: потоковый CDC с Apache Kafka, NiFi, AirFlow и Flink в DWH на Greenplum

Чтобы добавить в наши курсы для дата-инженеров по технологиям Apache Kafka, Spark, AirFlow, NiFi, Flink и Greenplum, еще больше практических примеров, сегодня разберем кейс ритейлера Леруа Мерлен. Читайте далее, как сотрудники российского отделения этой международной компании интегрировали в единую платформу более 350 реляционных СУБД и NoSQL-источников с помощью CDC-подхода на...

Apache Flink для пакетной и потоковой обработки Big Data в больших компаниях: примеры Pinterest и Alibaba Group

Сегодня рассмотрим пару кейсов по использованию Apache Flink в качестве основного фреймворка пакетной и потоковой аналитики больших данных. Читайте далее, как фото-хостинг Pinterest построил вокруг Flink собственную инфраструктуру работы с изображениями в реальном времени, а китайский ритейл-гигант Alibaba Group успешно обрабатывал 7 ТБ в секунду во время глобального дня шопинга....

Что такое Apache Hop: еще одна альтернатива AirFlow

При том, что Apache Airflow сегодня считается главным инструментом дата-инженерии, он далеко не единственное средство оркестрации пакетных заданий и построения конвейеров обработки больших данных. В рамках продвижения наших курсов для инженеров Big Data, сегодня рассмотрим, что такое Apache Hop, чем это отличается от AirFlow и где использовать эту платформу, а...