В этой статье для обучения дата-инженеров и разработчиков приложений потоковой аналитики больших данных рассмотрим, на что следует обратить внимание при развертывании Apache Flink в реальных проектах. Обработка опоздавших данных, тонкости сериализации, проблемы неравномерного распределения и большие состояния заданий. Обработка опоздавших данных в Apache Flink В потоковой обработке данных, которую поддерживает...
Как Apache Flink реализует строго однократную доставку событий в потовой обработке данных с помощью контрольных точек для записи данных в реляционную базу, используя функцию TwoPhasedCommitSink(), основанную на механизме согласованных snapshot’ов 35-летней давности и Kafka Transaction API. Трудности строго однократной доставки в потоковой обработке данных Распределенная обработка потоков с отслеживанием состояния...
Сегодня рассмотрим, как реализовать MLOps-идеи при разработке приложений Apache Flink с использованием MLeap, библиотеки сериализации для моделей машинного обучения. Зачем инженеры GetInData разрабатывали для этого свой коннектор и как его использовать на практике. Что такое MLeap и при чем здесь MLOps Будучи популярным вычислительным движком для потоковой аналитики больших данных,...
Мы уже писали про поиск сложных событий при их потоковой обработке средствами Apache Flink. Продолжая эту важную для обучения дата-инженеров тему, сегодня рассмотрим, как CDC-коннектор от GetIndata упрощает запуск распознавание шаблонов на потоках данных из многих источников. Проблемы захвата измененных данных из реляционной базы с помощью JDBC-драйвера и способы их...
Продолжая разговор про оконные операции в Apache Flink для потоковой аналитики больших данных, сегодня рассмотрим, как это связано с другим важным концептом потоковой обработки событий – водяным знаком. Что такое Watermark и каковы стратегии его генерации в Apache Flink: самое главное для дата-инженера. Потоковая синхронизация данных c SQL для Flink...
Мы регулярно добавляем в наши курсы по Apache Flink и Spark для дата-инженеров полезные материалы и инструменты, которые помогают повысить эффективность разработки и эксплуатации приложений аналитики больших данных. Читайте далее, что такое SeaTunnel и как эта высокопроизводительная платформа интеграции распределенных данных упрощает их потоковую синхронизацию средствами SQL-заданий Apache Flink и...
Чтобы сделать наши курсы по Apache Flink для дата-инженеров и разработчиков распределенных приложений еще более полезными, сегодня рассмотрим, как этот фреймворк потоковой аналитики больших данных реализует концепцию оконных функций. Жизненный цикл окна, ключевые понятия и оконные операции Apache Flink, управляемые данными и временем. Что такое окно в потоковой обработке данных...
Недавно мы писали про HTTP-коннектор к Apache Flink от компании GetInData, который позволяет обогатить ML-модель данными из внешней системы с использованием REST API и SQL-концепции Lookup Joins. Как устроен этот коннектор с открытым исходным кодом, и какие методы Flink SQL он использует: разбираем на практическом примере. Что такое HATEOAS: блеск...
В этой статье для обучения дата-инженеров и разработчиков распределенных приложений рассмотрим, как Flink SQL может обогатить ML-модель данными из внешней системы в режиме реального времени с использованием REST API. Что представляет собой http-flink-connector с открытым исходным кодом, разработанный GetInData на основе концепции Lookup Joins. Обогащение данных c SQL: достоинства использования...
Сегодня разберем тему, особенно полезную для обучения разработчиков распределенных приложений и дата-инженеров масштабных платформ аналитики больших данных на Apache Flink: обнаружение сложных цепочек связанных событий в потоковой обработке. Как создать свой шаблон поиска сложных событий с библиотекой FlinkCEP. Комплексная обработка событий или зачем вам CEP Современный data-driven бизнес хочет принимать...
Недавно мы писали про проблемы приложений Apache Flink в кластере Kubernetes. Сегодня рассмотрим, каким образом можно развернуть и запустить задания этого фреймворка распределенной обработки данных на самой популярной DevOps-платформе контейнерной виртуализации. Обзор операторов от Lyft, Google Cloud Platform, нативного расширения и возможностей платформы Ververica. Зачем и как выполнить развертывание Apache...
Сегодня рассмотрим, с какими нетиповыми ошибками может столкнуться дата-инженер при работе с Apache Flink, а также как решить эти проблемы. Где и что править, когда сервер BLOB-объектов завис из-за слишком большого количества подключений, почему не хватает памяти при развертывании Flink-приложений в кластере Kubernetes и как ускорить инициализацию заданий. Особенности работы...
Мы уже рассматривали важность мониторинга приложений Apache Flink и говорили про метрики отслеживания задержки обработки данных в потоковых заданиях. Сегодня заглянем под капот этого фреймворка и разберем, какие показатели работы JVM, а также RocksDB особенно важны для дата-инженера и разработчика распределенных приложений. Метрики JVM во Flink-приложениях Напомним, основным языком разработки...
Недавно мы говорили про непрерывный мониторинг Flink-приложений и подробно рассмотрели метрики состояния и пропускной способности. В продолжение этой важной для разработчиков и дата-инженеров темы, сегодня рассмотрим, как идентифицировать временную задержку обработки данных. Пользовательские метрики задержки в потоковых приложениях Для потоковых приложений, которые обрабатывают события в режиме, близком к реальному времени,...
Специально для обучения разработчиков распределенных приложений и дата-инженеров масштабных платформ аналитики больших данных на Apache Flink, рассмотрим наиболее важные системные показатели, а также инструменты мониторинга этих метрик. Мониторинг Flink-приложений: особенности и метрики В общем случае мониторинг приложений гарантирует, что ПО обрабатывает данные и выполняет запрошенные действия ожидаемым образом. Непрерывное отслеживание...
Сегодня рассмотрим 2 основные категории технологий обработки данных: пакетную и потоковую. Что общего между batch и stream processing, где они применяются, какими технологиями поддерживаются, можно ли их использовать вместе и как это сделать: ликбез по архитектуре больших данных. Потоковая и пакетная обработка: краткий обзор с примерами Обработки данных в режиме...
Недавно мы писали про главные новинки свежего релиза Apache Flink 1.15, особенно важные с точки зрения обучения разработчиков распределенных приложений и дата-инженеров. Сегодня рассмотрим подробнее, зачем в этом выпуске введены дополнительные режимы восстановления потоковых stateful-заданий из моментальных снимков, когда и какой режим использовать, а также как выбрать формат точки сохранения...
Что такое табличное хранилище Apache Flink, зачем это нужно и почему оно пока не рекомендуется для применения в реальных проектах. Краткий обзор Apache Flink Table Store 0.1.0 для дата-инженеров и разработчиков распределенных приложений. Что такое Flink Table Store и зачем это нужно Уже более полугода, с релиза 1.14, выпущенного в...
Весна богата на новые релизы: в начале мая 2022 года вышел Apache Flink 1.15. Рассказываем, что нового в свежем выпуске: краткий обзор самых полезных фич для разработчика распределенных приложений, а также интересные изменения, исправления ошибок и улучшения для дата-инженера. Scala под капотом и спецификация REST API по стандарту OpenAPI Apache...
Мы уже писали про динамическое изменение правил фильтрации без перезапуска Flink-приложений. В продолжение этой темы в рамках продвижения нашего нового курса по потоковой обработке данных помощью Apache Flink, сегодня рассмотрим, как избежать неравномерного распределения данных во время выполнения программы. Больше 3-х не собираться: бизнес-правила и динамика разделения данных Перекос или...