ETL по расписанию: 4 способа планирования запусков DAG в Apache AirFlow

Чем планирование запуска DAG в Apache AirFlow с объектом timedelta отличается от использования cron-выражений, в чем разница CronTriggerTimetable и CronDataIntervalTimetable, а также как создать собственный класс расписания. Объект timedelta vs cron-выражение: задание расписания запуска DAG в Apache AirFlow Apache AirFlow идеально подходит для классических пакетных ETL-сценариев, например, когда надо извлечь...

Сериализация в Apache AirFlow

Как Apache AirFlow сериализует и десериализует данные, зачем с версии 2 включена обязательная сериализация DAG в JSON, почему для пользовательской сериализации рекомендуются словари или примитивы и что поможет сократить нагрузку на базу данных метаданных через настройку параметров сериализации в конфигурационном файле фреймворка. Сериализация данных в Apache AirFlow Чтобы сохранить данные...

Apache AirFlow 2.10: что нового?

24 августа вышел новый релиз Apache AirFlow. Знакомимся с новинками версии 2.10: гибкая настройка исполнителей для всей среды, конкретного DAG и отдельных задач, а также динамическое планирование набора данных и улучшения GUI. Гибкая настройка исполнителей Одной из самых главных новинок Apache AirFlow 2.10 стала конфигурация гибридного исполнения, позволяющая использовать несколько...

Как движок выполнения влияет на транзакционность операций с FlowFile в Apache NiFi

Зачем в Stateless-движке настраивать порт отказа, почему этот механизм в Apache NiFi подходит для надежных и транзакционных источников, но не для всех протоколов передачи данных, а также чем классический режим выполнения эффективнее в эксплуатации. Транзакционность операций с FlowFile в Apache NiFi О том, что Apache NiFi поддерживает два механизма выполнения:...

Отправка уведомлений в Apache AirFlow

Как оповестить дата-инженера о задержке и результате выполнения задачи или всего DAG пакетного конвейера обработки данных: варианты отправки уведомлений в Apache AirFlow и особенности их применения. Варианты отправки уведомлений в Apache AirFlow Даже когда конвейер обработки данных разработан и успешно протестирован, в ходе его эксплуатации в рабочей среде неизбежно возникают...

Процессоры-слушатели в Apache NiFi

Какие процессоры Apache NiFi позволяют принимать и обрабатывать данные из различных источников по разным протоколам, и как избежать сбоев при их использовании с удержанием открытых соединений и порты. Listen-процессоры Apache NiFi В Apache NiFi есть целый набор процессов-слушателей, которые принимают и обрабатывают входящие данные из различных источников по разным протоколам....

YAML вместо Python: LowCode-разработка DAG в Apache AirFlow с DAG Factory

Как написать DAG в Apache AirFlow без программирования, определив его конфигурацию в YAML-файле, и автоматически получить пакетный конвейер обработки данных с помощью Python-библиотеки DAG Factory. Демократизация разработки ETL-конвейеров или что такое DAG Factory в Apache AirFlow Хотя Apache AirFlow и так считается довольно простым фреймворком для оркестрации пакетных процессов и...

Потоковая агрегация и передача данных из Kafka в Redis через SQL-запросы в RisingWave

Как SQL-запросами соединить потоки из разных топиков Apache Kafka и отправить результаты в Redis: демонстрация ETL-конвейера на материализованных представлениях в RisingWave. Постановка задачи и проектирование потоковой системы Продолжая недавний пример потоковой агрегации данных из разных топиков Kafka с помощью SQL-запросов, сегодня расширим потоковый конвейер в RisingWave, добавив приемник данных –...

Как написать свой отсроченный оператор Apache AirFlow

Почему триггеры отсроченных операторов Apache AirFlow не могут быть блокирующими и как сделать их асинхронными с помощью Python-библиотеки asyncio. Создание своего отсроченного оператора в Apache AirFlow О том, что такое отсроченные операторы, как они связаны с триггерами и асинхронными Python-вызовами в Apache AirFlow, мы недавно говорили здесь. Помимо использования существующих...

Асинхронные Python-вызовы и отсроченные операторы в Apache AirFlow

Что общего между триггерами, отсроченными операторами и асинхронными Python-вызовами в Apache AirFlow, чем они отличаются от стандартных операторов и сенсоров, для чего их использовать и как это сделать. Асинхронные вызовы и отсроченные операторы в Apache AirFlow В синхронном коде задачи выполняются последовательно, одна за другой. Причем каждая задача должна завершиться...

Apache NiFi 2.0.0-M4: июльские новинки мажорного релиза

1 июля 2024 г. опубликован очередной выпуск Apache NiFi 2.0.0. Знакомимся с его наиболее интересными добавлениями и улучшениями: критические изменения, обновленная интеграция с Kafka и новые процессоры для работы с файлами разных форматов. Обновленная интеграция с Kafka и другие новинки Apache NiFi 2.0.0-M4 Выпуск мажорного релиза не всегда происходит одним...

Успешный старт нового курса для дата-инженеров на Yandex Managed Service for Apache Airflow™

26-28 июня мы провели первый пилот нашей новой образовательной программы для дата-инженеров по Yandex Managed Service for Apache Airflow™, разработанной в сотрудничестве со специалистами компании Яндекс. Наши слушатели провели 3 активных дня, изучая теорию про самый популярный пакетный оркестратор и сразу же применяя ее на практике. За 24 часа каждый...

OpenID, Flask-AppBuilder и CVE-2024-25128 в Apache AirFlow

Чем уязвимость устаревшего метода аутентификации OpenID в Flask-AppBuilder опасна для Apache AirFlow и как это исправить? Обзор уязвимости CVE-2024-25128. Уязвимости OpenID для FAB в Apache AirFlow В конце февраля 2024 выяснилось, что в прошлом релизе Apache AirFlow 2.8, вышедшем 14 декабря прошлого года, обнаружилась критическая уязвимость, набравшая более 9 баллов...

Пулы и приоритеты задач в Apache AirFlow

Как изменить приоритет задачи в очереди исполнителя Apache AirFlow, на что влияет метод определения весов, каким образом можно балансировать нагрузку с помощью пулов и зачем настраивать количество слотов. Как приоритизировать задачи в очереди Apache AirFlow Дата-инженеры, которые используют Apache AirFlow для оркестрации пакетных процессов, знают, что задачи скапливаются в очереди...

Мониторинг NiFi-приложения внешними средствами через задачи отчетности

Что такое задачи отчетности, зачем они нужны и как с их помощью отслеживать события и системные метрики экземпляра NiFi-приложения, а также JVM. Обзор Reporting Tasks в Apache NiFi 2.0. Задачи отчетности в Apache NiFi Чтобы отслеживать события и метрики работающего экземпляра приложения Apache NiFi, этот фреймворк предоставляет специализированные инструменты, которые...

Контекст в Apache AirFlow

Для чего нужен контекст задачи Apache AirFlow, что он собой представляет, какие включает объекты, как получить к ним доступ и чем они полезны дата-инженеру. Что такое контекст задачи Apache AirFlow В разработке ПО контекстом называется среда, в которой существует объект. Это понятие очень важно при использовании специализированных фреймворков. Например, в...

5 типовых ошибок в Apache AirFlow и как их исправить: советы дата-инженеру

Почему планировщик Apache AirFlow чувствителен к всплескам рабочих нагрузок, из-за чего тормозит база данных метаданных, как исправить проблемы с файлом DAG, лог-файлами и внешними ресурсами: разбираемся с ошибками пакетного оркестратора и способами их решения.  Проблемы с планировщиком Хотя Apache AirFlow позиционируется как довольно простой фреймворк для оркестрации пакетных процессов с...

TaskFlow API и традиционные операторы Apache AirFlow: совместное использование

Чем API TaskFlow отличается от традиционных операторов Apache Airflow, можно ли их использовать вместе и как это сделать для более эффективной передачи данных между задачами DAG с помощью механизма XCom: несколько примеров. Что такое API TaskFlow в Apache Airflow Чтобы реализовать конвейер обработки данных в Apache AirFlow, можно использовать традиционные...

Apache AirFlow 2.9: обзор свежего релиза

8 апреля 2024 года вышел очередной релиз Apache AirFlow. Знакомимся с ключевыми новинками выпуска 2.9: от функций работы с наборами данных до настроек внешнего объектного хранилища в качестве бэкенда XCom-объектов и особенностей поддержки Python 3.12. Наборы данных и гибкое планирование DAG Airflow Выпуск 2.9 содержит более 35 интересных новых функций,...

Парадигма программирования потоков данных и ее отражение в Apache NiFi

Что такое программирование потоков данных и как ключевые идеи FBP-парадигмы обеспечивают высокую скорость и мощь Apache NiFi в потоковой обработке. Что такое Flow-Based Programming Каждый дата-инженер, работающий с Apache NiFi, знает, что этот фреймворк поддерживает потоковую обработку информации, понимая под потоком неограниченно поступающие данные. Однако, фундаментальные концепции NiFi основаны на...