Эффективное обучение AirFlow, также как курсы по Spark, Hadoop, Kafka и другим технологиям больших данных (Big Data) также включают нюансы интеграции этого фреймворка с другими средами. Например, вчера мы рассматривали преимущества DevOps-подхода к разработке Data Flow на примере взаимосвязи Apache Airflow с Kubernetes посредством специальных операторов. Продолжая эту тему, сегодня...
Вчера мы рассказали, почему запускать Airflow на Kubernetes – это эффективно и выгодно для всех участников batch-процессов с большими данными (Big Data): разработчиков Data Flow, Data Scientist’ов, аналитиков и инженеров. Сегодня рассмотрим, что такое Airflow Kubernetes Operator и чем он отличается от подобной разработки компании Google. Как работает AirFlow Kubernetes...
Чтобы обучение Airflow было максимально приближенным к практике, сегодня мы поговорим про особенности реального внедрения этого фреймворка для разработки, планирования и мониторинга пакетных процессов обработки больших данных (Big Data) с учетом современного DevOps-подхода. Читайте в нашей статье, зачем вообще нужна связка Apache Эйрфлоу с Kubernetes и как это реализовать технически....
Сегодня мы рассмотрим, что такое Data Fabric, почему этот тренд в аналитике больших данных (Big Data) считается одним из самых перспективных в 2020 году, зачем нужна фабрика данных и как она устроена. Читайте в нашей статье, чем Data Fabric отличается от Data Factory, причем тут цифровизация, DataOps и конвейеры по...
Продолжая разговор о том, как выбрать курсы по Kafka и другим технологиям больших данных (Big Data), сегодня рассмотрим, кому и в каких случаях нужно такое повышение квалификации. В этой статье мы собрали для вас 5 прикладных кейсов по Кафка для ИТ-профессионалов разных специальностей, от системного администратора до Data Engineer’а. А...
Рассмотрев пакетные ETL-инструменты больших данных, сегодня мы поговорим про потоковые средства загрузки и маршрутизации информации из различных источников: Apache NiFi, Fluentd и StreamSets Data Collector. Читайте в нашей статье про их сходства, различия, достоинства и недостатки. Также мы собрали для вас реальные примеры их практического использования в Big Data системах...
Сегодня мы рассмотрим популярные Big Data инструменты обработки потоковых данных: Apache Kafka Streams и Spark Streaming: чем они похожи и чем отличаются. Стоит сказать, что Спарк Стриминг и Кафка Стримс – возможно, наиболее популярные, но не единственные средства обработки информационных потоков Big Data. Для этой цели существует еще множество альтернатив,...
Мы уже рассказывали про Apache Kafka Streams API. В продолжение этой темы, сегодня отметим ключевые преимущества этой технологии, особенно важные для DevOps-инженера и разработчика Big Data систем, а также поговорим про некоторые недостатки и возможные альтернативы Кафка Стримс API. 5 главных достоинств Apache Kafka Streams API Для DevOps-инженера Big Data...
Продолжая разговор про Apache Kafka Streams, сегодня мы расскажем, как API этой мощной библиотеки упрощает жизнь DevOps-инженеру и разработчику Big Data систем. Читайте в нашей статье, как Kafka Streams API эффективно обрабатывать большие данные из топиков Кафка на лету без использования Apache Spark, а также быстро создавать и развертывать распределенные...
Читайте в нашей сегодняшней статье, как Apache Kafka Streams помогает быстро создавать приложения для обработки потоков Big Data без кластера Кафка, работать с состояниями распределенных программ без базы данных, эффективно тестировать и разворачивать потоковые микросервисы согласно DevOps-подходу, а также реальные кейсы практического применения этой технологии. Что такое Apache Kafka Streams...
Для высоконагруженных Big Data систем и платформ интернета вещей (Internet of Things, IoT) с непрерывными информационными потоками Apache Kafka, практически, стала стандартом де факто для обмена сообщениями и управления очередями. Аналогичную популярность среди DevOps-инструментов завоевал Kubernetes (K8s) как наиболее мощное средство для автоматизации развертывания и управления контейнеризованными приложениями. В этой...
Мы уже упоминали Apache Kafka в статье про промышленный интернет вещей (Industrial Internet Of Things, IIoT). Сегодня поговорим о том, где и для чего еще в Big Data проектах используется эта распределённая, горизонтально масштабируемая система обработки сообщений. Как работает Apache Kafka Apache Kafka позволяет в режиме онлайн обеспечить сбор и...
Проанализировав самые критичные уязвимости Kubernetes за последние 2 года и ключевые факторы их возникновения, сегодня мы поговорим, как DevOps-инженеру и администратору обеспечить информационную безопасность в контейнерах Kubernetes для их эффективного применения в Big Data системах. Лучшие практики cybersecurity для Kubernetes Комплексную безопасность кластера Kubernetes и больших данных, которые там хранятся...
Мы уже рассказывали про самые критичные уязвимости Kubernetes за последние 2 года. Продолжая тему информационной безопасности в контейнерах Big Data систем, сегодня мы поговорим, почему популярнейшая DevOps-технология так чувствительна к хакерским атакам. Читайте в нашей статье об основных факторах нарушения cybersecurity в DevOps-инфраструктуре на примере Kubernetes и Docker. Основные векторы...
В продолжении темы контейнеризации приложений и применения этой технологии в Big Data системах, сегодня мы поговорим, действительно она абсолютно безопасна. А также насколько популярнейшая DevOps-технология, Kubernetes, «великий кормчий» среди систем оркестрации контейнеров, соответствует своему визуальному образу «неуязвимого» океанического лайнера. Спойлер: на самом деле нет, K8s, как и любые другие технологии...
Мы уже рассказывали про достоинства и недостатки самой популярной DevOps-технологии 2019 года – платформы управления контейнерами Kubernetes для Big Data систем. Сегодня поговорим, зачем вообще нужны контейнеры, чем они отличаются от виртуальных машин, каковы их плюсы и минусы, а также для чего нужна их оркестрация. Что такое контейнеризация приложений и...
Сегодня, когда ИТ-компании распиливают монолиты своих Big Data систем на микросервисы, а DevOps-подход совершает свое победное шествие по локальным и облачным кластерам, Kubernetes стал, пожалуй, самой востребованной технологией 2019 года. Однако, K8s нужен далеко не каждому проекту. В этой статье мы поговорим о достоинствах и недостатках кубернетис, в каких случаях...
Рассматривая архитектуру и принципы работы IoT-систем, мы уже упоминали, что наиболее интеллектуальная часть работы по анализу данных выполняется в облаке с помощью специальных средств Big Data, объединенных в общую платформу. Сегодня поговорим о функциях IoT-платформ и технологиях, на которых основаны эти облачные решения. Также мы подготовили для вас краткий обзор...
В результате цифровой трансформации «традиционного предприятия» должна получиться идеальная организация, работающая на основе данных, в т.ч. больших (Big Data). Сегодня мы поговорим, что такое Data-Driven Company, чем она отличается и как ей стать: читайте в нашей статье, какие инструменты Big Data, методы Agile и инженерные подходы системного анализа применяются для...
Продолжая тему развития Agile, сегодня мы расскажем о новом видении DevOps, предполагающем полный отказ от девопс-инженеров при сохранении всех принципов этого похода. Читайте в нашей статье, что такое NoOps и как эта концепция реализуется в мире Big Data. 5 разных мнений о DevOps Хотя термину «DevOps» уже исполнилось более 10...