Как запустить службу внешнего хранилища метаданных Apache Hive в AWS EKS

Сегодня рассмотрим, зачем нужно внешнее хранилище метаданных для Apache Hive, и как запустить его высокодоступный и масштабируемый сервис в Amazon EKS путем контейнеризации приложения. Зачем нужно внешнее хранилище метаданных Apache Hive? Apache Hive используется для доступа к данным, хранящимся в распределенной файловой системе Hadoop (HDFS) через стандартные SQL-запросы. Это NoSQL-хранилище...

Как применить триггеры Apache Spark Structured Streaming для пакетных заданий

Можно ли применять Apache Spark Structured Streaming для пакетных заданий и в каких случаях это целесообразно. Разбираемся, как устроена потоковая передача событий в Spark Structured Streaming, с какой частотой разные режимы триггеров микропакетной обработки данных запускают потоковые вычисления и что выбрать дата-инженеру. Потоковая передача событий и пакетные задания: versus или...

ТОП-7 проблем с платформами данных и способы их обойти

Сегодня разберем распространенные трудности корпоративных платформ обработки и хранения Big Data, а также как избежать этих проблем, используя современные методы и средства  проектирования дата-архитектур и инструменты инженерии данных. 7 главных проблем с платформами данных Обычно каждая data-driven компания органично развивает свои платформы данных, усложняя их архитектуры. Но этот процесс эволюционного...

Как перейти от Apache Hive к Iceberg: стратегии миграции данных

Недавно мы рассматривали, как дата-инженеры Airbnb перевели аналитические нагрузки корпоративного озера данных с Apache Hive на Iceberg и Spark. Продолжая разговор про эти фреймворки реализации Data Lake, сегодня разберем стратегии миграции озера данных с Apache Hive на Iceberg. Зачем уходить с Apache Hive на Iceberg и как это сделать Напомним,...

Ошибки обновления таблиц в Delta Lake и их решения с Apache Spark Structured Streaming

Сегодня мы продолжим говорить про Apache Spark Structured Streaming и его применение для обновления данных в таблицах Delta Lake. А также на практических примерах разберем, как выполняются основные операции работы с данными средствами Spark Structured Streaming API. Таблицы в Delta Lake Delta Lake – это уровня хранилища данных с открытым...

Идемпотентность приложений Apache Spark Structured Streaming в Delta Lake

Продолжая недавний разговор про Apache Spark Structured Streaming, сегодня рассмотрим, как этот движок потоковой обработки данных помогает дата-инженеру реализовать идемпотентную запись в таблицы Delta Lake, а также выполнить операции слияния и обновления/вставки в помощью метода foreachBatch(). Идемпотентность потоковых приложений Apache Spark Идемпотентность – важное свойство распределенных систем, которое гарантирует, что...

Блеск и нищета каталогов метаданных для Data Lake: преимущества Apache Iceberg над Hive

Какова роль каталогов метаданных в корпоративных Data Lake, почему Hive Metastore не отвечает всем потребностям современной дата-инженерии в гибком управлении данными и в чем преимущества формата открытых таблиц Iceberg над таблицами Hive и Delta Lake. Каталоги метаданных в Data Lake Для организации данных в корпоративных озерах используются каталоги метаданных, которые...

ETL-конвейер передачи данных из MySQL в Hive с Apache NiFi

Сегодня разберем, как автоматизировать наполнение озера данных на HDFS через загрузку таблиц из реляционной базы MySQL в Hive с помощью Apache NiFi. Какие процессоры NiFi следует использовать и зачем предварительно разделять таблицу Apache Hive. Пример ETL-конвейера на процессорах Apache NiFi Apache NiFi часто используется дата-инженерами в качестве средства автоматизации и...

От Apache Hive к Iceberg и Spark: модернизация озера данных в Airbnb

Рассмотрим, как дата-инженеры Airbnb делятся своим опытом перевода корпоративного Data Lake на Apache HDFS в облачное объектное хранилище AWS S3. Почему пришлось переводить аналитические нагрузки с Apache Hive на Iceberg и Spark, и какие результаты это принесло. Предыстория: Data Lake на HDFS и Apache Hive Будучи крупнейшей онлайн-площадкой для размещения...

Безопасность архитектуры данных: проблемы Data Mesh и их решения

Data Mesh воплощает децентрализованный подход к построению распределенной архитектуры данных. При всех достоинствах этой модели, которая совмещает потоковую и пакетную парадигмы обработки данных, она еще довольно незрелая и имеет ряд недостатков. Одним из них является проблема с информационной безопасностью, что мы и рассмотрим далее для обучения ИТ-архитекторов и дата-инженеров. Безопасность...