Почему производительность Apache Flink выше Spark: 5 главных причин

Из-за чего приложения Flink работают быстрее Spark: разница в моделях обработки данных, управлении памятью, методах оптимизации, дизайне API и личный опыт использования. Apache Flink vs Spark: сходства и отличия Apache Spark и Flink считаются наиболее популярными фреймворками разработки распределенных приложений в области Big Data. Они достаточно похожи, что мы ранее...

Чем Scala лучше Java для разработки Spark-приложения: ТОП-5 преимуществ

Как разница между Scala и Java отражается на работе Spark-приложения, почему код на Scala работает быстрее и когда выбирать этот язык программирования для разработки приложений аналитики больших данных. Scala vs Java: ключевые отличия Хотя Apache Spark позволяет разработчику писать код на нескольких языках программирования (Scala, Java, R, Python), сам фреймворк...

Сжатие данных в Greenplum

Как включить сжатие данных в Greenplum, какие алгоритмы сжатия поддерживает эта MPP-СУБД и можно ли установить разные параметры сжатия для отдельных столбцов и разделов больших таблиц. Примеры SQL-запросов и рекомендацию по настройке. Как Greenplum сжимает данные: примеры настроек и SQL-запросов Эффективное сжатие данных позволяет Greenplum снижать потребление памяти и повышать...

Event Streaming vs Event Sourcing: 2 паттерна проектирования EDA-архитектуры

В чем разница между потоковой передачей событий и источником событий и при чем здесь Apache Kafka: разбираемся с паттернами проектирования событийно-ориентированной архитектуры. 2 паттерна проектирования EDA-архитектуры Напомним, что сегодня для построения сложных систем, зачастую состоящих из множества взаимодействующих компонентов, и реактивно реагирующих на события внешнего мира, активно используется идея архитектуры,...

Apache Spark 3.5.0: что нового?

13 сентября 2023 года вышел Apache Spark 3.5. Знакомимся с самыми важными новинками свежего релиза: расширения Spark Connect и SQL, поддержка DeepSpeed, улучшения потоковой передачи и свежие UDF-функции Python. ТОП-5 новинок Apache Spark 3.5.0 В Apache Spark 3.5. добавлено много исправлений и улучшений, а также реализованы новые функции. Наиболее интересными...

2 режима развертывания приложений Apache Flink: что и когда выбирать

Какие режимы развертывания заданий поддерживает Apache Flink и чем они отличаются. Достоинства и недостатки режима сеанса и режима приложения, а также варианты использования. Особенности развертывания приложения Apache Flink Режим развертывания определяет, с каким уровнем изоляции ресурсов задание Flink будет выполняться в кластере. Напомним, выполнение задания Apache Flink включает 3 объекта:...

Что такое SPIP: 4 предложения по улучшению Apache Spark

Сегодня рассмотрим, какие улучшения Apache Spark опубликованы в 2023 году и как подать свое предложение по улучшению самого популярного вычислительного движка в стеке Big Data. Что такое SPIP и как подать свое предложение по улучшению фреймворка В любом продукте помимо ошибок есть также предложения по улучшению. В Apache Spark они...

Apache AirFlow vs Spark в Databricks для оркестрации рабочих процессов

Чем отличается оркестрация ETL-процессов в Databricks и Apache AirFlow: принципы работы, достоинства и недостатки, а также что выбирать дата-инженеру для решения практических задач. Apache AirFlow vs Spark в Databricks: сходства и отличия Облачная платформа Databricks, основанная на Apache Spark, предлагает пользователям единую среду для создания, запуска и управления различными рабочими...

Параллельное восстановление таблицы из резервной копии базы в Greenplum

Почему в Greenplum 7 восстановление данных из резервной копии базы стало медленнее и как разработчики это исправили: причины замедления и способы их устранения. SQL-синтаксис и восстановление из бэкапа Напомним, 7-ой релиз Greenplum имеет много интересных и полезных функций, включая возможность определять партиционированную таблицу без определения дочерних разделов и изменять таблицы...

Программируй на английском: ИИ-SDK для PySpark от Databricks

Как получать результаты обработки данных с помощью Apache Spark, адресуя ИИ бизнес-запросы на английском языке: знакомимся с English SDK от Databricks. Настоящий Low Code с PySpark-AI. English SDK for Apache Spark и PySpark-AI: как это работает Большие языковые модели (LLM, Large Language Model), основанные на генеративных нейросетях, применимы не только...

Apache Kafka, BPMS и оркестрация процессов: versus или вместе

Может ли Apache Kafka поддерживать не только хореографический стиль взаимодействия между разными сервисами, кто и как организует оркестрацию рабочих процессов с помощью этой распределенной платформой потоковой передачи и почему она не заменит BPM-движки. Оркестрация событий с Apache Kafka При использовании Apache Kafka в архитектуре, управляемой событиями (EDA, Event Driven Architecture),...

Как Apache Flink работает с файловыми системами

Какие файловые системы поддерживает Apache Flink: средства взаимодействия с файлами, хранящимися локально или в объектных хранилищах HDFS, S3 и GCS. Особенности работы с файловыми системами в Apache Flink Apache Flink имеет собственную абстракцию файловой системы через класс org.apache.flink.core.fs.FileSystem. Эта абстракция обеспечивает общий набор операций и минимальные гарантии для различных типов...

Квотирование в Apache Kafka

Что такое квоты в Apache Kafka и как этот механизм позволяет управлять ресурсами брокера, предупреждая DDOS-атаки от слишком активных потребителей и продюсеров. Разбираемся с типами клиентских квот, их конфигурациями и принципами работы. Квоты клиента и пользователя в Apache Kafka Чтобы управлять ресурсами брокера, кластер Kafka может применять квоты на запросы...

Отладка PySpark-приложений: журнал регистрации событий

Сегодня рассмотрим особенности отладки PySpark-приложений: как Python-код исполняется в JVM, какие сложности возникают у разработчика при тестировании и исправлении ошибок в программе, написанной локально и запускаемой в кластере, а также как настроить вывод событий в лог-файл. Запуск и выполнение PySpark-кода Хотя Apache Spark и имеет Python API, позволяя писать код...

Обогащение потока данных в Apache Flink: 3 способа добавить эталонные значения

Что такое потоковое обогащение данных, зачем это нужно и как оно реализуется в Apache Flink. Проблемы и решения предварительной загрузки справочных данных в память, синхронного и асинхронного поиска в источнике по каждой записи и организация потоковой передачи событий. 3 способа загрузить эталонные (справочные) данных в Apache Flink для обогащения потока...

Как проект Lightspeed от Databricks делает Apache Spark еще быстрее: асинхронное управление смещениями

В прошлом году Databricks выпустили новый проект для ускорения потоковой передачи в Apache Spark. Сегодня рассмотрим, как именно Lightspeed сокращает задержку в операционных рабочих нагрузках Structured Streaming с помощью асинхронного управления смещением. Операционные рабочие нагрузки и что их тормозит в Apache Spark Structured Streaming Рабочие нагрузки потоковой передачи можно разделить...

Архитектура данных в TSDB-решениях для анализа временных рядов

Чем базы данных временных рядов отличаются от реляционных и key-value хранилищ, какова модель данных для хранения метрик, значения которых меняются во времени, какие решения этой категории NoSQL-СУБД сегодня популярны на рынке и для чего они используются. Что такое база данных временных рядов и где она используется Как и следует из...

Как организовать мониторинг системных метрик Greenplum: подходы и инструменты

Сегодня рассмотрим, какие системные метрики Greenplum необходимо отслеживать администратору кластера и дата-инженеру для оценки работоспособности и эффективности этой СУБД, а также с помощью каких инструментов это сделать. Мониторинг средствами Greenplum Прежде всего, стоит отметить, что контролировать Greenplum можно с помощью различных инструментов, включенных в систему или доступных в качестве надстроек....

Регулярные выражения в Apache Spark

Каждый дата-инженер и аналитик данных активно использует регулярные выражения для поиска значений в тексте по заданному шаблону. Сегодня рассмотрим, как это сделать с функциями regexp_replace(), rlike() и regexp_extract в Apache Spark на примере небольшого PySpark-приложения. Как работает функция regexp_replace() Регулярным выражением называется последовательность символов, задающая шаблон соответствия в тексте. Например,...

Многоуровневое хранилище в Apache Kafka: разбираемся с KIP-405

Что представляет собой очередное предложение по улучшению проекта Apache Kafka, которое расширяет возможности этой распределенной платформы потоковой передачи событий, превращая ее в средство долговременного хранения данных. Надежность vs скорость: вечный компромисс в Apache Kafka Изначально Apache Kafka позиционировалась как middleware, т.е. сервисный слой для асинхронной интеграции нескольких информационных систем. Этот...