Apache Cassandra и HBase: конкуренты или альтернативы – 10 ключевых сходств и отличий

Cassandra и HBase считаются наиболее популярными NoSQL-СУБД в мире Big Data. Сегодня мы поговорим, что между ними общего и чем отличаются эти нереляционные базы данных, сравнив их по 10 ключевым параметрам: от архитектуры до инструментальных средств. Что общего между Apache Cassandra и HBase: 5 главных сходств Прежде всего отметим, чем...

Как Apache Cassandra, Kafka, Storm и Hadoop формируют рекомендации пользователям Spotify

Продолжая разговор про примеры практического использования Apache Cassandra в реальных Big Data проектах, сегодня мы расскажем вам о рекомендательной системе стримингового сервиса Spotify на базе этой нереляционной СУБД в сочетании с другими технологиями больших данных: Kafka, Storm, Crunch и HDFS. Рекомендательная система Spotify: зачем она нужна и что должна делать...

10 примеров применения Apache Cassandra в 5 направлениях Big Data

Благодаря быстроте, надежности и другим достоинствам Apache Cassandra, эта распределенная NoSQL-СУБД широко применяется во многих Big Data проектах по всему миру. В этой статье мы собрали для вас несколько интересных примеров реального использования Кассандры в 5 ключевых направлениях современного ИТ. Где используется Apache Cassandra: 5 главных приложений c примерами Промышленные...

Как работает Apache Cassandra: запись, чтение и другие операции с Big Data в распределенной NoSQL-СУБД

В прошлой статье мы разобрали, как настраиваемые уровни согласованности влияют на скорость работы с данными в Apache Cassandra. Сегодня поговорим, как в этой нереляционной базе данных выполняются операции записи, чтения, уплотнения и удаления. Читайте в нашей статье, что такое memTable, SSTable и Bloom-фильтр, благодаря которым рассматриваемая распределенная NoSQL-СУБД может обработать...

Раз-два-много: уровни согласованности Apache Cassandra при распределенной обработке Big Data

Как мы уже отмечали, одним из преимуществ Кассандры является возможность задания уровня согласованности для операций чтения и записи данных. В этой статье рассмотрим, какие бывают уровни согласованности для этих процессов в Apache Cassandra, и как они влияют на скорость работы распределенной NoSQL-СУБД при ее эксплуатации в реальных Big Data проектах....

ТОП-10 достоинств и 5 главных недостатков Apache Cassandra

Продолжая тему нереляционных хранилищ данных, сегодня мы поговорим о главных плюсах и минусах Apache Cassandra. Читайте в нашем материале, чем хороша эта отказоустойчивая распределенная NoSQL-СУБД и с какими проблемами можно столкнуться при ее использовании в реальном Big Data проекте. Чем хороша Кассандра: 10 ключевых преимуществ Начнем с положительных моментов. Благодаря...

7 основных преимуществ и пара недостатков Apache HBase для Big Data систем

В этой статье мы поговорим про ключевые достоинства и недостатки Apache HBase, а также рассмотрим наиболее интересные примеры практического использования этой нереляционной распределенной СУБД в крупных Big Data проектах. Достоинства и недостатки одной из самых популярных NoSQL СУБД для Big Data Прежде всего, отметим, что Apache HBase и Cassandra считаются...

Птичка + рыбка: синергия Apache Phoenix и HBase для быстрой SQL-аналитики Big Data в Hadoop

Сегодня мы рассмотрим еще один инструмент стека SQL-on-Hadoop: Apache Phoenix, позволяющий выполнять SQL-запросы к нереляционной СУБД HBase. Читайте в нашей статье, что представляет собой этот исполнительный механизм, как он работает и чем отличается от других Big Data решений подобного класса (Cloudera Impala, Apache Hive и Drill). Также мы собрали для...

Apache Drill vs Cloudera Impala: SQL-аналитика Big Data не только в Hadoop

Cloudera Impala – далеко не единственное SQL-решение для быстрой обработки больших данных (Big Data), хранящихся в среде Hadoop. C Impala часто сравнивают Apache Hive, однако они существенно отличаются в плане прикладного использования, как мы уже показали здесь. Гораздо ближе к Impala с точки зрения вычислительной модели и сценариев использования (use...

Что выбрать для SQL-аналитики Big Data в Hadoop: Apache Hive или Cloudera Impala

Завершая сравнение SQL-инструментов для больших данных (Big Data), хранящихся в среде Hadoop, сегодня мы рассмотрим аргументы в пользу Apache Hive и Cloudera Impala – когда стоит выбирать ту или иную систему и почему. Также в этой статье мы собрали для вас несколько практических примеров реального использования Импала и Хайв в...

Как защитить Big Data в Hive и Impala: проблема безопасности в SQL-on-Hadoop

Продолжая тему SQL-on-Hadoop, сегодня мы рассмотрим вопросы обеспечения информационной безопасности в Apache Hive и Cloudera Impala. Читайте в нашем материале, что такое RBAC, в чем специфика cybersecurity больших данных в экосистеме Hadoop и какие средства помогут защитить Big Data при работе с Hive и Impala. Что такое RBAC для SQL-on-Hadoop...

Что такое HiveQL: SQL для Big Data в Apache Hadoop – как работают Hive и Impala

Мы уже разобрали, что общего между Apache Hive и Cloudera Impala. В этой статье рассмотрим работу этих систем с точки зрения программиста, а также поговорим про язык HiveQL. Читайте в сегодняшнем материале, как эти системы выполняют SQL-запросы для аналитики больших данных (Big Data), хранящихся в кластере Hadoop. Что такое HiveQL,...

Hive vs Impala: сходства и различия SQL-инструментов для Apache Hadoop

В прошлой статье мы рассмотрели основные возможности и ключевые характеристики Apache Hive и Cloudera Impala. Сегодня подробнее поговорим про то, что между ними общего и чем отличаются друг от друга эти SQL-инструменты для обработки больших данных (Big Data), хранящихся в кластере Hadoop. Что общего между Apache Hive и Cloudera Impala:...

Hive и Impala: коллеги или конкуренты – обзор SQL-инструментов для Apache Hadoop

Сегодня мы рассмотрим Apache Hive и Cloudera Impala – аналитические SQL-средства для работы с данными, хранящимися в экосистеме Apache Hadoop и других Big Data хранилищах: HDFS, HBase, Amazon S3. Читайте в нашей статье, что такое Hive и Impala, где они используются и почему они не заменяют, а дополняют друг друга....

4 этапа SQL-оптимизации в Big Data: насколько эффективен Catalyst в Apache Spark

Завершая тему SQL-оптимизации в Big Data на примере Apache Spark, сегодня мы подробнее расскажем, какие действия выполняются на каждом этапе преобразования дерева запросов в исполняемый код. А рассмотрим, за счет чего так эффективна автоматическая кодогенерация в Catalyst. Читайте в нашей статье про планы выполнения запросов, квазиквоты Scala и операции с...

Как работает оптимизация SQL-запросов в Apache Spark: деревья запросов в Catalyst optimizer

Продолжая разговор про SQL-оптимизацию в Apache Spark, сегодня мы рассмотрим, что такое дерево запросов и как оптимизатор Catalyst преобразует его в исполняемый байт-код при аналитической обработке Big Data в рамках Спарк. Деревья структурированных запросов и правила управления ими в Apache Spark Отметим, что деревья запросов отличаются от алгебраических деревьев операций тем, что...

Что такое оптимизация SQL-запросов в Apache Spark: разбираемся с Catalyst optimizer

Мы уже немного рассказывали об SQL-оптимизации в Apache Spark. Продолжая эту тему, сегодня рассмотрим подробнее, что такое Catalyst – встроенный оптимизатор структурированных запросов в Spark SQL, а также поговорим про базовые понятия SQL-оптимизации. Читайте в нашей статье о логической и физической оптимизации, плане выполнения запросов и зачем эти концепции нужны...

Что лучше: RDD, DataFrame или DataSet и почему – выбор структуры данных Apache Spark

Завершая сравнение структур данных Apache Spark, сегодня мы рассмотрим, в каких случаях разработчику Big Data стоит выбирать датафрейм (DataFrame), датасет (DataSet) или RDD и почему. Также мы приведем практический примеры и сценарии использования (use cases) этих программных абстракций, важных при разработке систем и сервисов по интерактивной аналитике больших данных с...

RDD, DataFrame и DataSet с точки зрения программиста Apache Spark: в чем разница

Продолжая говорить о сходствах и отличиях структур данных Apache Spark, сегодня мы рассмотрим, чем похожи датафрейм (DataFrame), датасет (DataSet) и RDD с позиции разработчика Big Data. Читайте в нашей статье, как обеспечивается оптимизация кода, безопасность типов при компиляции и прочие аспекты, важные при разработке распределенных программ и интерактивной аналитике больших...

RDD vs DataFrame vs DataSet: чем отличаются эти структуры данных Apache Spark

В прошлый раз мы рассмотрели понятия датафрейм (DataFrame), датасет (DataSet) и RDD в контексте интерактивной аналитики больших данных (Big Data) с помощью Spark SQL. Сегодня поговорим подробнее, чем отличаются эти структуры данных, сравнив их по разным характеристикам: от времени возникновения до специфики вычислений. Критерии сравнения структур данных Apache Spark Прежде...