Почему в ClickHouse нет полноценных транзакций, но введена экспериментальная поддержка ACID для операций вставки в таблицы движка MergeTree, как это реализуется и чем синхронная вставка отличается от асинхронной. Особенности операций вставки в ClickHouse В ClickHouse нет полноценных транзакций, поскольку это колоночное хранилище в первую очередь ориентировано на чтение большого объема...
Какие SQL-команды есть в Greenplum для транзакционной обработки данных, как MVCC исключает явные блокировки, можно ли установить их вручную и как это сделать: режимы блокировки и глобальный детектор взаимоблокировок в MPP-СУБД. Транзакции, MVCC и режимы блокировки Greenplum Про изоляцию транзакций в Greenplum и Arenadata DB мы уже писали здесь. Транзакции...
Что общего у клиент-серверной архитектуры Spark Connect с JDBC-драйвером подключения к БД, как взаимодействуют клиент и сервер по gRPC, как подключиться к серверу и указать обязательность поля в схеме proto-сообщения. Как работает Spark Connect О том, что представляет собой Spark Connect и зачем нужен этот клиентский API, позволяющий удаленно подключаться...
3 июня 2024 года вышел предварительный релиз Apache Spark 4.0. Эта версия еще не считается стабильной и предназначена только для ознакомления. Поэтому даже полноценные release notes по ней пока отсутствуют. Тем не менее, сегодня познакомимся с наиболее интересными фичами этого выпуска: новый тип данных VARIANT, API источника данных Python и...
Почему потоковый сервер Greenplum выгружает данные во внешние системы пакетно: тонкости утилиты gpfdist и YAML-файла конфигурации выгрузки. Возможности и ограничения GPSS-сервера при выгрузке данных во внешние системы из MPP-СУБД. Потоковый сервер Greenplum Ключевым отличием Greenplum от PostgreSQL является поддержка механизма массово-параллельной обработки, благодаря чему эта MPP-СУБД относится к стеку Big...
Для чего смотреть планы выполнения запросов при работе с API pandas в Spark и как это сделать: примеры использования метода spark.explain() и его аргументов для вывода логических и физических планов. Разбираем на примере PySpark-скрипта. API pandas и физический план выполнения запроса в Apache Spark Мы уже писали, что PySpark, API-интерфейс...
Как ClickHouse реализует разреженные индексы, что такое гранула, чем отличается широкий формат хранения данных от компактного, и почему значения первичного ключа в диапазоне параметров запроса должны быть монотонной последовательностью. Тонкости индексации в ClickHouse Индексация считается одним из наиболее известных способов повышения производительности базы данных. Индекс определяет соответствие значения ключа записи...
Что такое модификатор FINAL в SELECT-запросе ClickHouse, с какими табличными движками он работает, почему снижает производительность и как этого избежать. Тонкости потокового выполнения SQL-запросов в колоночной СУБД. Зачем в SELECT-запросе ClickHouse нужен модификатор FINAL? Хотя SQL-запросы в ClickHouse имеют типовую структуру, их реализация зависит от используемого движка таблиц. Например, запрос...
Как равномерно распределить по шардам ClickHouse уже существующие данные, зачем профилировать запросы, какие профилировщики поддерживает эта колоночная СУБД и каким образом их использовать. Ребалансировка шардов в ClickHouse Какой бы быстрой не была база данных, ее работу всегда хочется ускорить еще больше. Одним из популярных способов ускорения распределенной СУБД является шардирование...
Как прочитать данные из ClickHouse в Apache NiFi или загрузить их в таблицу колоночной СУБД: настройки подключения, использование процессоров и тонкости потоковой интеграции. Подключение к ClickHouse из Apache NiFi Как и интеграция ClickHouse с Apache AirFlow, связь этой колоночной СУБД с приложением NiFi реализуется с помощью решения сообщества, средствами самого...
Как расширить возможности Apache Flink с помощью дополнительных плагинов: подключение внешних ресурсов и обогащение отказов пользовательскими метками. Разбираемся с продвинутыми настройками для эффективной эксплуатации фреймворка. Внешние ресурсы Apache Flink Помимо процессора и памяти, многим рабочим нагрузкам также требуются другие ресурсы, например, графические процессоры для глубокого обучения. Для поддержки внешних ресурсов...
Как эффективно распределять и использовать ресурсы ClickHouse, зачем ограничивать возможности пользователей с помощью квот и классифицировать рабочие нагрузки. Управление ресурсами в ClickHouse Благодаря своей децентрализованной архитектуре ClickHouse, когда один экземпляр включает несколько серверов, к которым напрямую приходят запросы пользователей, эта колоночная СУБД работает очень быстро. Для репликации данных и выполнения...
Проблемы управления данными в мультиарендной среде или как Databricks решил изолировать клиентские приложения Apache Spark на общей виртуальной машине Java друг от друга и от самого фреймворка (драйвера и исполнителей). Знакомство с Lakeguard на базе каталога Unity. Проблемы управления данными в мультитенантной среде Компания Databricks не просто развивает и продвигает...
Чем полезна интеграция ClickHouse с Apache Airflow и как ее реализовать: операторы в пакете провайдера и плагине на основе Python-драйвера. Принципы работы и примеры использования. 2 способа интеграции ClickHouse с AirFlow Продолжая разговор про интеграцию ClickHouse с другими системами, сегодня рассмотрим, как связать эту колоночную СУБД с мощным ETL-движком Apache...
От чего зависит задержка передачи данных из Apache Kafka в ClickHouse, как ее определить и ускорить интеграцию брокера сообщений с колоночной СУБД: настройки и лучшие практики. Интеграция ClickHouse с Kafka Чтобы связать ClickHouse с внешними системами, в этой колоночной СУБД есть специальные механизмы – интеграционные движки таблиц. Например, для взаимодействия...
Зачем устанавливать максимальный для каждого задания Apache Flink, для чего stateful-оператору пользовательский UUID, как выбрать подходящий бэкенд хранения состояний, от чего зависит оптимальный интервал создания контрольных точек и где настраивается высокая доступность менеджера заданий. 5 главных настроек перед запуском Flink-приложения в производственное развертывание Перед запуском приложения Apache Flink в производственное...
Какие источники исходных данных поддерживает Apache Spark для пакетной и потоковой обработки, обеспечивая отказоустойчивые вычисления в большом масштабе средствами SQL и Structured Streaming. Источники данных Apache Spark SQL и структурированной потоковой передачи Будучи фреймворком для создания распределенных приложений обработки больших объемов данных, Apache Spark может подключаться к разным источникам этих...
Как координатор Greenplum на мастер-хосте рассылает сегментам планы выполнения запросов, что такое курсор параллельного получения результатов оператора SELECT и каким образом его использовать для аналитики больших данных в этой MPP-СУБД. Особенности рассылки планов SQL-запросов в Greenplum на выполнение Хотя Greenplum основана на PostgreSQL, некоторые механизмы работы этих СУБД отличаются. Например,...
Чем кэширование в OLAP-системах отличается от OLTP и как устроен кэш запросов ClickHouse: принципы работы, конфигурационные настройки и примеры использования SELECT-оператора. Особенности кэширования в ClickHouse Кэширование является одним из методов повышения производительности, который сокращает время на получение результатов вычислений за счет их хранения в области быстрого доступа. Обычно кэшируются результаты...
Как с Apache Flink настроить локальную службу OLAP, а также развернуть ее в рабочей среде производственного кластера: архитектура, принципы работы и параметры конфигурации для сложных аналитических сценариев. Служба Flink OLAP: архитектура и принципы работы Идея выделить в Apache Flink механизм OLAP для анализа данных в потоковом хранилище появилась еще год...