В этой статье для обучения дата-инженеров и разработчиков приложений потоковой аналитики больших данных рассмотрим, на что следует обратить внимание при развертывании Apache Flink в реальных проектах. Обработка опоздавших данных, тонкости сериализации, проблемы неравномерного распределения и большие состояния заданий. Обработка опоздавших данных в Apache Flink В потоковой обработке данных, которую поддерживает...
Чтобы сделать наши практические курсы по Apache Kafka еще более полезными, сегодня рассмотрим, в каких файлах хранятся сообщения, смещения и состояния продюсера, а также функции работы с ними для потоковой передачи событий. Средства обработки и хранения данных в Apache Kafka Прежде, чем погружаться в тонкости хранения данных в Apache Kafka,...
Сегодня мы продолжим говорить про Apache Spark Structured Streaming и его применение для обновления данных в таблицах Delta Lake. А также на практических примерах разберем, как выполняются основные операции работы с данными средствами Spark Structured Streaming API. Таблицы в Delta Lake Delta Lake – это уровня хранилища данных с открытым...
В прошлой статье про обновление Apache NiFi мы писали, что в новой версии 1.18.0 улучшено взаимодействие с протоколом MQTT, который активно используется в системах интернета вещей. Сегодня разберем более подробно, как наладить сбор и публикацию данных в MQTT-топики с помощью процессоров Apache NiFi, а также разберем, что такое брокер HiveMQ....
Продолжая недавний разговор про Apache Spark Structured Streaming, сегодня рассмотрим, как этот движок потоковой обработки данных помогает дата-инженеру реализовать идемпотентную запись в таблицы Delta Lake, а также выполнить операции слияния и обновления/вставки в помощью метода foreachBatch(). Идемпотентность потоковых приложений Apache Spark Идемпотентность – важное свойство распределенных систем, которое гарантирует, что...
Недавно мы рассматривали тонкости проектирования схем данных в Greenplum. Продолжая разбирать важные для обучения дата-инженеров и архитекторов DWH темы, сегодня поговорим о том, как разделение и распределение данных влияют на скорость выполнения SQL-запросов в этой MPP-СУБД. Распределение данных Напомним, MPP-СУБД Greenplum широко используется в качестве OLAP-системы и корпоративного хранилища данных....
Сегодня рассмотрим, как дата-инженеры маркетплейса Whatnot масштабировали потоковую обработку данных с помощью Apache Kafka, изменив свои ETL-процессы и реализовав на этой распределенной платформе шину событий для анализа пользовательского поведения c ksqlDB и Rockset. Постановка задачи: события пользовательского поведения в Whatnot Whatnot – это маркетплейс, пользователи которого могут покупать и продавать...
Как Apache Flink реализует строго однократную доставку событий в потовой обработке данных с помощью контрольных точек для записи данных в реляционную базу, используя функцию TwoPhasedCommitSink(), основанную на механизме согласованных snapshot’ов 35-летней давности и Kafka Transaction API. Трудности строго однократной доставки в потоковой обработке данных Распределенная обработка потоков с отслеживанием состояния...
Какова роль каталогов метаданных в корпоративных Data Lake, почему Hive Metastore не отвечает всем потребностям современной дата-инженерии в гибком управлении данными и в чем преимущества формата открытых таблиц Iceberg над таблицами Hive и Delta Lake. Каталоги метаданных в Data Lake Для организации данных в корпоративных озерах используются каталоги метаданных, которые...
Разработка высоконагруженных систем потоковой аналитики больших данных включает не только написание кода, но и его оптимизацию. Поэтому разработчикам приложений Apache Spark Structured Streaming и дата-инженерам полезно знать, как можно повысить эффективность своих Big Data систем. В этой статье мы рассмотрим конфигурации и приемы, которые могут ускорить пакетные и потоковые вычисления....