Cloudera Data Science Workbench vs Arenadata Analytic Workspace: сравнительный обзор

Самообслуживаемая аналитика больших данных – один из главных трендов в современном мире Big Data, который дополнительно стимулирует цифровизация. В продолжение темы про self-service Data Science и BI-системы, сегодня мы рассмотрим, что такое Cloudera Data Science Workbench и чем это зарубежный продукт отличается от отечественного Arenadata Analytic Workspace на базе Apache...

Как связаны DataOps, цифровизация и аналитика больших данных: разбираем на примере отечественного Big Data продукта – Arenadata Analytic Workspace

Продолжая разговор про Apache Zeppelin, сегодня рассмотрим, как на его основе ведущий разработчик отечественных Big Data решений, компания «Аренадата Софтвер», построила самообслуживаемый сервис (self-service) Data Science и BI-аналитики – Arenadata Analytic Workspace. Читайте далее, как развернуть «с нуля» рабочее место дата-аналитика, где место этого программного решения в конвейере DataOps и при...

Чем Apache Zeppelin лучше Jupyter Notebook для интерактивной аналитики Big Data: 4 ключевых преимущества

В этой статье мы рассмотрим, что такое Apache Zeppelin, как он полезен для интерактивной аналитики и визуализации больших данных (Big Data), а также чем этот инструмент отличается от популярного среди Data Scientist’ов и Python-разработчиков Jupyter Notebook. Что такое Apache Zeppelin и чем он полезен Data Scientist’у Начнем с определения: Apache...

Аналитика больших данных для фармацевтов: Arenadata Hadoop и другие Big Data системы в аптечной сети АСНА

В этой статье разберем кейс построения экосистемы управления Big Data с озером данных на примере федеральной фармацевтической сети - российской Ассоциации независимых аптек (АСНА). Читайте в этом материале, зачем фармацевтическому ритейлеру большие данные, с какими трудностями столкнулся этот проект цифровизации и как открытые технологии (Arenadata Hadoop, Apache Spark, NiFi и...

Big Data в профиль: что такое профилирование больших данных

Мы уже затрагивали тему корпоративных хранилищ данных (КХД), управления мастер-данными и нормативно-справочной информаций (НСИ) в контексте технологий Big Data. В продолжение этого, сегодня рассмотрим, что такое профилирование данных, зачем это нужно, при чем тут озера данных (Data Lake) и ETL-процессы, а также прочие аспекты инженерии и аналитики больших данных. Что...

ClickHouse + Kafka: 5 примеров совместного использования и особенности интеграционного движка

В этой статье рассмотрим интеграцию ClickHouse с Apache Kafka: когда и зачем она нужна, как связать эти две Big Data системы, каковы ограничения и недостатки существующих способов и каким образом их можно обойти. Также разберем, почему кластер Кликхаус использует Zookeeper и что такое материализованное представление таблицы Кафка. Big Data маркетинг,...

Как связать Greenplum и Kafka: 2 способа интеграции и коннектор Arenadata DB

Мы уже рассказывали про интеграцию Tarantool с Apache Kafka на примере Arenadata Grid. Сегодня рассмотрим, как интегрировать Кафка с MPP-СУБД Greenplum и каковы ограничения каждого из существующих способов. Читайте в сегодняшнем материале, что такое GPSS, PXF и при чем тут Docker-контейнер с коннектором Кафка для Arenadata DB. IoT и не...

4 крупных примера внедрения Tarantool, 3 достоинства и 2 главных недостатка IMDB

Сегодня рассмотрим ключевые достоинства и недостатки резидентных СУБД для больших данных на примере Tarantool. Читайте в нашей статье про основные сценарии использования In-Memory Database (IMDB) в области Big Data с конкретными кейсами из реального бизнеса от Альфа-Банка, Аэрофлота, Тинькофф-Банка и Мегафона. Где и как используются In-Memory в Big Data: 4...

Интеграция Big Data или как связать Tarantool c Apache Kafka на примере Arenadata Grid

Продолжая разбираться с In-Memory СУБД Tarantool и Arenadata Grid, сегодня рассмотрим, как эти резидентные базы данных интегрируются с Apache Kafka. Читайте в нашей статье, что такое коннекторы и процессоры, а также как записать в топик Кафка сообщение, SQL-запрос или часть таблицы. Arenadata Grid и Apache Kafka: коннектор + процессоры Напомним,...

Зачем вам Tarantool: разгоняем большие данные с помощью In-Memory database

В этой статье мы рассмотрим резидентные (In-Memory) базы данных на примере Tarantool и Arenadata Grid: что это, как они работают и где используются. Еще поговорим, каким образом эти Big Data системы могут ускорить работу распределенных приложений без замены существующих СУБД, а также при чем здесь промышленный интернет вещей и экосистема...

Зелено – не молодо: как устроена MPP-СУБД Greenplum

В этом материале рассмотрим реализацию массово-параллельной архитектуры для хранения и аналитической обработки больших данных на примере популярной Big Data СУБД Greenplum. Прочитав эту статью, вы поймете, почему MPP-базы потребляют много ресурсов и как связано число сегментов со скоростью работы кластера. MPP, Greenplum и PostgreSQL Напомним, СУБД Greenplum – это типичный представитель...

3 главных достоинства и недостатка MPP-СУБД для хранения и аналитики Big Data на примере Greenplum

Сегодня поговорим про достоинства и недостатки массово-параллельной архитектуры для хранения и аналитической обработки больших данных, рассмотрев Greenplum и Arenadata DB. Читайте в нашей статье, что такое MPP-СУБД, где и как это применяется, чем полезны эти Big Data решения и с какими проблемами можно столкнуться при их практическом использовании. Что MPP-СУБД...

Очень быстрая аналитика больших данных: Arenadata QuickMarts и яндексовский ClickHouse

Вчера мы рассказывали про применение Arenadata DB в крупной отечественной сети розничного ритейла. Сегодня рассмотрим еще один Big Data продукт от российской компании Аренадата, который Х5 Retail Group использует для быстрой аналитики больших данных. Читайте в нашей статье, что такое Arenadata QuickMarts и при чем здесь ClickHouse от Яндекса. Что...

Еще больше данных для торговой аналитики: Arenadata в Х5 Retail Group

Продолжая разговор про успехи применения отечественных Big Data продуктов, сегодня мы рассмотрим пример использования Arenadata DB в одной из ведущих отечественных компаний розничного ритейла. Читайте в нашей статье про особенности внедрения распределенной отказоустойчивой MPP-СУБД для аналитики больших данных в Х5 Retail Group. Зачем ритейлеру еще одно Big Data решение: специфика...

Завод, телеком и госсектор: 3 примера внедрения Arenadata

В этой статье мы продолжим рассказывать про практическое использование отечественных Big Data решений на примере российского дистрибутива Arenadata Hadoop (ADH) и массивно-параллельной СУБД для хранения и анализа больших данных Arenadata DB (ADB). Сегодня мы приготовили для вас еще 3 интересных кейса применения этих решений в проектах цифровизации бизнеса и государственном...

От банков до Газпрома: 4 крупных успеха Arenadata – интересные кейсы за последнюю пару лет

Сегодня мы поговорим про продукты компании Arenadata – отечественного разработчика дистрибутива Apache Hadoop (ADH), массивно-параллельной СУБД для хранения и анализа больших данных Arenadata DB (ADB) и других Big Data платформ. Читайте в нашей статье, где внедрены эти решения и какую пользу они уже успели принести бизнесу. Облака и банк: 3...

Сложно, дорого, универсально: 3 мифа о Hadoop и их опровержения

Сегодня мы поговорим о заблуждениях насчет базового инфраструктурного понятия хранения и обработки больших данных – экосистеме Hadoop и развеем 3 самых популярных мифа об этой технологии. А также рассмотрим применение Cloudera, Hortonworks, Arenadata, MapR и HDInsight для проектов Big Data и машинного обучения (Machine Learning). Миф №1: Hadoop – это...