Многопользовательское развертывание Apache AirFlow: проблемы и решения

Что не так с работой Apache AirFlow в многопользовательской среде, зачем предоставлять каждой команде свое развертывание ETL-фреймворка, каковы недостатки этого решения и как организовать мультитенантный кластер. Почему Apache Airflow не предназначен для многопользовательского использования В современной дата-инженерии Apache AirFlow стал наиболее популярным инструментом для пакетных ETL-процессов. Чтобы использовать его наиболее...

Настройка планировщика Apache AirFlow

Как устроен планировщик заданий Apache AirFlow, от чего зависит его производительность и какие конфигурации помогут ее улучшить: настройки, приемы, рекомендуемые значения и лучшие практики. Как работает планировщик Apache AirFlow Apache AirFlow как фреймворк оркестрации пакетных процессов включает несколько компонентов. Одним из них является планировщик (scheduler), который отслеживает все задачи и...

ETL по расписанию: 4 способа планирования запусков DAG в Apache AirFlow

Чем планирование запуска DAG в Apache AirFlow с объектом timedelta отличается от использования cron-выражений, в чем разница CronTriggerTimetable и CronDataIntervalTimetable, а также как создать собственный класс расписания. Объект timedelta vs cron-выражение: задание расписания запуска DAG в Apache AirFlow Apache AirFlow идеально подходит для классических пакетных ETL-сценариев, например, когда надо извлечь...

Сериализация в Apache AirFlow

Как Apache AirFlow сериализует и десериализует данные, зачем с версии 2 включена обязательная сериализация DAG в JSON, почему для пользовательской сериализации рекомендуются словари или примитивы и что поможет сократить нагрузку на базу данных метаданных через настройку параметров сериализации в конфигурационном файле фреймворка. Сериализация данных в Apache AirFlow Чтобы сохранить данные...

Apache AirFlow 2.10: что нового?

24 августа вышел новый релиз Apache AirFlow. Знакомимся с новинками версии 2.10: гибкая настройка исполнителей для всей среды, конкретного DAG и отдельных задач, а также динамическое планирование набора данных и улучшения GUI. Гибкая настройка исполнителей Одной из самых главных новинок Apache AirFlow 2.10 стала конфигурация гибридного исполнения, позволяющая использовать несколько...

Отправка уведомлений в Apache AirFlow

Как оповестить дата-инженера о задержке и результате выполнения задачи или всего DAG пакетного конвейера обработки данных: варианты отправки уведомлений в Apache AirFlow и особенности их применения. Варианты отправки уведомлений в Apache AirFlow Даже когда конвейер обработки данных разработан и успешно протестирован, в ходе его эксплуатации в рабочей среде неизбежно возникают...

YAML вместо Python: LowCode-разработка DAG в Apache AirFlow с DAG Factory

Как написать DAG в Apache AirFlow без программирования, определив его конфигурацию в YAML-файле, и автоматически получить пакетный конвейер обработки данных с помощью Python-библиотеки DAG Factory. Демократизация разработки ETL-конвейеров или что такое DAG Factory в Apache AirFlow Хотя Apache AirFlow и так считается довольно простым фреймворком для оркестрации пакетных процессов и...

Как написать свой отсроченный оператор Apache AirFlow

Почему триггеры отсроченных операторов Apache AirFlow не могут быть блокирующими и как сделать их асинхронными с помощью Python-библиотеки asyncio. Создание своего отсроченного оператора в Apache AirFlow О том, что такое отсроченные операторы, как они связаны с триггерами и асинхронными Python-вызовами в Apache AirFlow, мы недавно говорили здесь. Помимо использования существующих...

Асинхронные Python-вызовы и отсроченные операторы в Apache AirFlow

Что общего между триггерами, отсроченными операторами и асинхронными Python-вызовами в Apache AirFlow, чем они отличаются от стандартных операторов и сенсоров, для чего их использовать и как это сделать. Асинхронные вызовы и отсроченные операторы в Apache AirFlow В синхронном коде задачи выполняются последовательно, одна за другой. Причем каждая задача должна завершиться...

Успешный старт нового курса для дата-инженеров на Yandex Managed Service for Apache Airflow™

26-28 июня мы провели первый пилот нашей новой образовательной программы для дата-инженеров по Yandex Managed Service for Apache Airflow™, разработанной в сотрудничестве со специалистами компании Яндекс. Наши слушатели провели 3 активных дня, изучая теорию про самый популярный пакетный оркестратор и сразу же применяя ее на практике. За 24 часа каждый...