Apache NiFi 1.17: обзор нового релиза

1 августа 2022 года вышел очередной выпуск самого популярного потокового ETL-маршрутизатора. Что нового в Apache NiFi 1.17 для дата-инженера и администратора кластера: новые фичи, исправления ошибок и главные улучшения. Главные новинки Apache NiFi 1.17 Свежий выпуск Apache NiFi 1.17.0 включает сотни исправлений ошибок, улучшений и обновлений зависимостей для повышения стабильности...

Как ускорить потоковую обработку: лучшие практики для администратора кластера Apache NiFi

В этой статье для обучения дата-инженеров и администраторов кластера Apache NiFi разберем лучшие практики настройки этого популярного маршрутизатора потоковых данных. Какие настройки задать в операционной системе Linux и что исправить в конфигурациях самого Apache NiFi, чтобы ускорить обработку потоковых данных. Что настроить в Linux: 6 конфигураций Как и большинство серверных...

Потоковая отправка событий в Splunk с Apache NiFi

В рамках обучения дата-инженеров сегодня рассмотрим пример отправки данных в платформу сбора и анализа системных логов Splunk с помощью Apache NiFi. Как работает процессор PutSplunkHTTP, когда вместо него стоит выбрать InvokeHTTP, что такое HEC-токен и какие HTTP-методы REST API обеспечивают интеграцию Splunk с Apache NiFi. Что такое Splunk и как...

Настройка кластера Apache NiFi со встроенным Zookeeper

Сегодня рассмотрим важную для обучения администраторов кластера Apache NiFi тему по установке и настройке этого потокового ETL-фреймворка с использованием встроенного сервиса координации и синхронизации метаданных в распределенных системах Zookeeper. А также рассмотрим, как процесс выбора лидера в кластере Zookeeper позволяет серверам избежать аномальных всплесков трафика от клиентов и роста нагрузки....

Как сделать ETL-конвейеры Spark-заданий в AWS EMR на 50% дешевле: кейс Duolingo

Как Cluster Autotuner от Sync для автонастройки кластера Spark в AWS EMR помог edtech-компании Duolingo снизить затраты на 55%. Полезный сервис для дата-инженера и администратора кластера, чтобы устранить неэффективную ручную настройку, обеспечив оптимальную стоимость, производительность и надежность распределенных вычислений без изменения кода. Дорогой Apache Spark на AWS EMR Duolingo –...

Как развернуть Apache Flink на Kubernetes: 4 способа

Недавно мы писали про проблемы приложений Apache Flink в кластере Kubernetes. Сегодня рассмотрим, каким образом можно развернуть и запустить задания этого фреймворка распределенной обработки данных на самой популярной DevOps-платформе контейнерной виртуализации. Обзор операторов от Lyft, Google Cloud Platform, нативного расширения и возможностей платформы Ververica. Зачем и как выполнить развертывание Apache...

3 проблемы Flink-приложений на Kubernetes и способы их решения

Сегодня рассмотрим, с какими нетиповыми ошибками может столкнуться дата-инженер при работе с Apache Flink, а также как решить эти проблемы. Где и что править, когда сервер BLOB-объектов завис из-за слишком большого количества подключений, почему не хватает памяти при развертывании Flink-приложений в кластере Kubernetes и как ускорить инициализацию заданий. Особенности работы...

Как обеспечить высокое качество потоковых данных с реестром схем Apache Kafka

С какими проблемами качества данных сталкивается дата-инженер при работе с Apache Kafka и как реестр схем поможет их решить. Чем формат сериализации Apache AVRO отличается от JSON и Protobuf, как использовать Schema Registry и обеспечить совместимость данных: краткое пошаговое руководство для дата-инженера. Качество данных и реестр схем Apache Kafka Низкое...

Мониторинг микросервисов с Apache Kafka, Jaeger и OpenTelemetry

В этой статье для обучения дата-инженеров и архитекторов распределенных систем рассмотрим, что такое наблюдаемость, как ее измерить и при чем здесь стандарт OpenTelemetry. А в качестве примера разберем, как французский маркетплейс Cdiscount управляет почти 1000 микросервисов в кластере Kubernetes с Apache Kafka, Jaeger, Elasticsearch и OpenTelemetry. Наблюдаемость распределенной системы: стандарт...

Мониторинг Flink-приложений: метрики JVM и RocksDB

Мы уже рассматривали важность мониторинга приложений Apache Flink и говорили про метрики отслеживания задержки обработки данных в потоковых заданиях. Сегодня заглянем под капот этого фреймворка и разберем, какие показатели работы JVM, а также RocksDB особенно важны для дата-инженера и разработчика распределенных приложений. Метрики JVM во Flink-приложениях Напомним, основным языком разработки...

SIGTERM в Apache Airflow: 4 причины сбоя задач и способы их исправления

Каждый дата-инженер, который работает с Apache Airflow, сталкивался с сигналом SIGTERM, который отправляется задачам и приводит к сбою DAG. Сегодня рассмотрим, почему случается исключение airflow.exceptions.AirflowException, которое генерирует этот сигнал, и как его избежать. Тайм-аут выполнения DAG Одна из причин, по которой задача получает сигнал SIGTERM, связана с небольшим значением параметра...

Мониторинг приложений Apache Flink: метрики и инструменты

Специально для обучения разработчиков распределенных приложений и дата-инженеров масштабных платформ аналитики больших данных на Apache Flink, рассмотрим наиболее важные системные показатели, а также инструменты мониторинга этих метрик. Мониторинг Flink-приложений: особенности и метрики В общем случае мониторинг приложений гарантирует, что ПО обрабатывает данные и выполняет запрошенные действия ожидаемым образом. Непрерывное отслеживание...

Стойки кластера и отказоустойчивость приложений Kafka Streams с релизом 3.2

В свежем релизе Apache Kafka 3.2.0, который вышел 17 мая 2022 года, о чем мы писали здесь, есть много интересных улучшений для повышения устойчивости потоковых приложений. Почему важна новая фича назначения резервных задач с учетом стоек и как разработчик с дата-инженером могут использовать в помощь администратору кластера: разбор rack awareness...

10 лучших практик для повышения эффективности Apache HBase

Сегодня рассмотрим, как выполняются операции чтения и записи в Apache HBase, а также с помощью каких приемов можно их ускорить. Как рассчитать оптимальное количество регионов в таблице, зачем отключать версионирование, почему размер ключа строки должен быть небольшим и еще 7 полезных лайфхаков для администратора HBase-кластера. Оптимизация записи данных в Apache...

Динамическое сопоставление задач в Apache AirFlow 2.3

Недавно мы писали про Apache AirFlow 2.3.0 от 30 апреля 2022 года. Сегодня более подробно разберем одну из главных новинок этого релиза – динамическое сопоставление задач. Что это такое, как работает и зачем нужно дата-инженеру. Что такое динамическое сопоставление задач в ETL-конвейере Напомним, динамическое сопоставление задач (Dynamic Task Mapping) считается...

Apache Kafka 3.2: что нового?

17 мая 2022 года вышел очередной релиз главной платформы потоковой передачи событий. Смотрим самые важные обновления свежей Apache Kafka 3.2.0 с точки зрения разработчика распределенных приложений, дата-инженера и администратора кластера. ТОП-5 новинок свежей версии Apache Kafka для администратора кластера Apache Kafka 3.2.0 включает 2 новые фичи, 36 улучшений и 65...

Детективная история про SCR-конфигурации HDFS в региональных серверах Apache HBase

В этой статье для обучения дата-инженеров и администраторов кластера Apache HBase разберем, почему региональные сервера могут работать некорректно при высокой нагрузке и при чем здесь SCR-конфигурация файловой системы Hadoop. Что такое Short-Circuit Read в HDFS и почему оно может снижать скорость потокового чтения в приложениях Spark Streaming. Постановка задачи: проблема...

Apache Airflow 2.3: что нового?

30 апреля 2022 года вышел новый релиз Apache Airflow, который содержит более 700 коммитов с предыдущей версии 2.2.0 и включает 50 новых функций, 99 улучшений, 85 исправлений ошибок и несколько изменений в документации. Разбираемся, что особенно важно для дата-инженера в Apache Airflow 2.3.0. ТОП-7 главных фич Apache AirFlow 2.3.0: краткий...

Как быстро и безопасно удалять брокеры из кластера Kafka: решение от Confluent

Сегодня рассмотрим важную для обучения администраторов кластера Apache Kafka тему про удаление брокеров. Что происходит, когда администратор удаляет брокер Kafka из кластера, какие сложности при этом могут возникнуть и как с ними справляется решение на базе платформы Confluent. Как вручную удалить брокер Kafka из кластера: краткий guide администратора На первый...

CI/CD для дата-инженера: разработка DAG и развертывание в среде Airflow с GitLab

Интеграция Apache Airflow с инструментами CI/CD является одной из лучших практик современной дата-инженерии, о чем мы недавно писали. Читайте далее, зачем нужно управлять кодом DAG с помощью популярных систем управления версиями и как это сделать на примере GitLab CI/CD. Сложности управления DAG в разных средах AirFlow Apache Airflow считается наиболее...