Как сделать запуск UDF-функций Python или R на узлах сегмента Greenplum более быстрым и безопасным с помощью Docker-контейнеров и расширения PL/Container. Что такое PL/Container и как это использовать в Greenplum Запуск пользовательского кода для базы данных всегда имеет риск нарушения информационной безопасности. Если речь идет о стеке Big Data, ущерб...
Учитывая рост интереса к DevOps-инструментам, сегодня рассмотрим, зачем переводить кластер Apache Spark, управляемый YARN, в Kubernetes, и как это сделать наиболее эффективно. А также разберем, какие системные метрики контейнерных Spark-приложений надо отслеживать и с помощью каких средств. Зачем переводить кластер Apache Spark от YARN на Kubernetes Apache Spark не зря...
Сегодня рассмотрим, зачем нужно внешнее хранилище метаданных для Apache Hive, и как запустить его высокодоступный и масштабируемый сервис в Amazon EKS путем контейнеризации приложения. Зачем нужно внешнее хранилище метаданных Apache Hive? Apache Hive используется для доступа к данным, хранящимся в распределенной файловой системе Hadoop (HDFS) через стандартные SQL-запросы. Это NoSQL-хранилище...
В продолжение недавней статьи для дата-инженеров по эффективной работе с Apache AirFlow, сегодня разберем еще несколько рекомендаций от компании Astronomer, которая продвигает и коммерциализирует этот ETL-оркестратор. Чем полезна микрооркестрация с несколькими средами AirFlow, как обеспечить повторное использование и воспроизводимость, зачем нужна интеграция с инструментами и процессами CI/CD. Микрооркестрация с множеством...
Сегодня рассмотрим несколько рекомендаций по построению масштабной и устойчивой экосистемы интеграции корпоративных данных на базе Apache AirFlow от компании Astronomer, которая активно способствует продвижению и коммерциализации этого популярного инструмента дата-инженерии. Как организовать эффективную маршрутизацию рабочих процессов с пакетным ETL-оркестратором: 3 лучших практики. Стандартизация сред разработки и промышленной эксплуатации с Kubernetes...
Почему следует избегать PythonOperator в конвейере обработки пакетных данных на Apache Airflow и что использовать вместо этого оператора для описания задач DAG. Когда лаконичный CLI лучше наглядного GUI, где и как применять библиотеку Python Fire для оркестрации, а также планирования запуска batch-заданий. Зачем нам CLI или что не так с PythonOperator...
Запуск Apache Airflow с Kubernetes сегодня стал стандартом де-факто. Однако, при практическом развертывании Airflow с помощью исполнителя Kubernetes и оператора пода в кластере этой платформы оркестрации контейнерных приложений возникает множество препятствий и трудностей. Сегодня рассмотрим, как обойти их с помощью service-mesh проекта с открытым исходным кодом Istio, какие проблемы могут при...
11 марта 2022 года вышла новая версия Apache Airflow Helm Сhart. Рассмотрим главные новинки релиза 1.5.0 и их практическую ценность с точки зрения прикладной дата-инженерии. А также разберем ключевые понятия этого менеджера пакетов Kubernetes. Что такое Helm chart в Kubernetes и причем здесь Apache AirFlow Напомним, Helm – это менеджер пакетов...
Мы уже рассказывали, что такое Graceful shutdown на примере Spark Streaming. Сегодня разберем реализацию этой идеи плавного завершения задач в потоковой обработке данных применяется в компании Carwow при работе с Apache Kafka и dyno-контейнерами приложений Heroku. Потоковая обработка данных и проблема завершения потоковых заданий в контейнерах Heroku Carwow - британская...
Чтобы дополнить наши курсы по Kafka и Spark интересными примерами, сегодня рассмотрим практический кейс разработки микросервисного конвейера машинного обучения на этих фреймворках. Читайте далее, зачем выносить ML-компонент в отдельное Python-приложение от остальной части Big Data pipeline’а, и как Docker поддерживает эту концепцию микросервисного подхода. Постановка задачи и компоненты микросервисного ML-конвейера...
В рамках нового курса Эксплуатация Apache NIFI, сегодня разберем особенности развертывания этого маршрутизатора потоков Big Data на платформе управления контейнерными приложениями Kubernetes. Советы дата-инженерам, как сократить расходы на AWS, избежать сбоев узлов и потерь данных, обеспечить безопасность и автоматическое масштабирование облачного кластера Apache NiFi в Amazon EKS, а также зачем...
Совмещение Airflow с Kubernetes уже становится стандартом де-факто для дата-инженеров. Недавно мы рассказывали про 3 популярные среды развертывания и сопровождения этого ETL-фреймворка в Kubernetes. Продолжая эту тему, сегодня рассмотрим, какие операторы использовать для контейнерного запуска batch-задач, а также поговорим о том, как Docker-образы помогут решить проблему изменения версий Python и...
Продолжая разговор про оптимизацию приложений Apache Spark в Kubernetes, сегодня разберем, как сократить расходы на облачный кластер с помощью спотовых узлов. А в качестве практического примера рассмотрим кейс компании Weather2020, дата-инженеры которой смогли всего за 3 недели развернуть террабайтные ETL-конвейеры в AWS с AirFlow и Spark на Kubernetes без глубокой...
Недавно мы рассказывали об особенностях запуска приложений Apache Spark в кластере Kubernetes с учетом новшеств релиза 3.1.1, где с этого варианта развертывания снят экспериментальный режим. В дополнение к ранее рассмотренным способам оптимизации Спарк-приложений, сегодня разберем, как инженеру Big Data ускорить их при запуске на платформе K8s. Как ускорить Spark-приложения на...
Вчера мы упоминали, что с марта 2021 года в версии Apache Spark 3.1.1 с развертывания на Kubernetes снят экспериментальный режим, внесено множество улучшений для стабильной работы контейниризованных приложений и добавлены другие полезные обновления. Читайте далее, почему развертывание Spark на Kubernetes стало еще проще, как реализуется плавное завершение работы узла без...
С учетом тренда на контейнеризацию при разработке и развертывании любых технологий, в т.ч. Big Data, сегодня рассмотрим плюсы и минусы совместного использования Apache Spark с Kubernetes. Читайте далее, как отправить Спарк-задание в кластер Кубернетес и почему это сэкономит затраты на вашу инфраструктуру аналитики больших данных, не повысив производительность отдельных приложений,...
Завершая цикл статей про MLOps, сегодня мы расскажем про 5 шаблонов практического внедрения моделей Machine Learning в промышленную эксплуатацию (production). Читайте далее, что такое Model-as-Service, чем это отличается от гибридного обслуживания и еще 3-х вариантов интеграции машинного обучения в production-системы аналитики больших данных (Big Data), а также при чем тут...
Вчера мы рассказывали об основных сценариях запуска Apache Spark на Kubernetes и преимуществах этого варианта развертывания популярного Big Data фреймворка на DevOps-платформе автоматизированного управления контейнеризированными приложениями. Сегодня поговорим про обратную сторону всех этих преимуществ: читайте в нашей статье, каковы основные ограничения и главные недостатки запуска Apache Spark на Kubernetes (K8s)....
Чтобы сделать курсы по Spark еще более интересными и полезными, сегодня мы расскажем, зачем этот Big Data фреймворк разворачивают на Kubernetes (K8s) – платформе автоматизации развёртывания, масштабирования и управления контейнеризированными приложениями. Читайте в нашей статье про основные варианты использования и достоинства этого подхода к администрированию и эксплуатации Apache Spark. Зачем...
Чтобы наглядно показать, как аналитика больших данных и машинное обучение помогают быстро решить актуальные бизнес-проблемы, сегодня мы рассмотрим кейс компании Леруа Мерлен. Читайте в нашей статье про нахождение аномалий в сведениях об остатках товара на складах и в магазинах с помощью моделей Machine Learning, а также про прикладное использование Apache...