Вместо Trino и ClickHouse: что такое StarRocks и как оно устроено, архитектура и принципы работы, сценарии использования и место в корпоративной архитектуре данных. Архитектура и принципы работы StarRocks Хотя ClickHouse сегодня считается одним из наиболее популярных колоночных хранилищ для аналитики больших объемов данных в реальном времени, это не единственный представитель...
22 апреля 2025 вышел долгожданный крупный релиз Apache Airflow. Знакомимся с главными новинками версии 3.0: изменения архитектуры и пользовательского интерфейса для повышения устойчивости и безопасности фреймворка. Еще раз про версионирование DAG в Apache AirFlow 3.0 Недавно мы писали про бета-релиз Apache AirFlow 3.0. Теперь мажорная версия вышла официально и доступна...
Почему задание Flink не обрабатывает потоковые данные из топика Kafka и при чем здесь водяные знаки: причины потери данных или растущей задержки вычислений и способы их решения. Почему задание Flink не обрабатывает потоковые данные и при чем здесь водяные знаки? Рассмотрим простой потоковый конвейер на Apache Flink и Kafka: задание...
Как Apache Kafka обеспечивает упорядоченность сообщений в рамках раздела, где хранятся смещения потребителей и зачем их фиксировать вместе со эпохой брокера-лидера. Что такое смещения потребителей Apache Kafka и где они хранятся Асинхронная интеграция между информационными системами через Apache Kafka основана на смещениях потребителей – позиции сообщения в разделе топика. Раздел...
Как развивались системы агентского ИИ, из каких компонентов они состоят, каковы их типовые архитектуры и чем отличаются друг от друга топологии построения рабочих процессов LLM. История развития систем агентского ИИ Развитие и практическое внедрение больших языковых моделей (LLM, Large Language Model) привело к появлению систем агентского ИИ, где LLM динамически...
Как сократить затраты на хранение исторических данных в ClickHouse для ИИ-сценариев, сохранив высокую скорость аналитики по широким таблицам и озеру данных: эволюция колоночной СУБД в новом проекте с исходным кодом Antalya от Altinity. Проблемы совмещения ClickHouse с озерами данных и способы их решения Благодаря колоночной структуре хранения данных ClickHouse не...
Как связать ИИ-агентов: событийно-ориентированная архитектура и потоковая передача событий для интеграции доменных LLM в мультиагентную систему. Зачем нужна интеграция ИИ-агентов О проблеме изоляции и рассинхронизации данных в корпоративных хранилищах мы уже писали здесь. Похожая ситуация наблюдается и при внедрении систем агентского ИИ, где большие языковые модели (LLM, Large Language Model)...
Что такое Apache Wayang, чем он похож на Beam и в чем разница с Trino: архитектура и принципы работы еще одного распределенного фреймворка интеграции данных. Что такое Apache Wayang и чем это отличается от Trino Trino – это мощный, но далеко не единственный инструмент распределенного выполнения аналитических запросов, способный обрабатывать...
Почему MCP-серверы с технологиями потоковой передачи событий в LLM стали трендом: примеры обогащения ИИ-агентов контекстом из Kafka. Внедрение MCP в Confluent Cloud для взаимодействия с Apache Kafka Хотя MCP-протокол, позволяющий ML-модели новыми контекстными данными, что необходимо для больших языковых моделей (LLM, Large Language Model), довольно прост с технической точки зрения,...
Как улучшить интеграцию LLM в бизнес-процессы и информационные системы через стандартизированную передачу контекстной информации: текстовый MCP-протокол для LLM. Что контекстный протокол модели и почему он важен для LLM Одно из ключевых отличий популярных ИИ-инструментов, больших языковых моделей (LLM, Large Language Model) – это их способность генерировать ответы с учетом контекста....
Как LLM упрощают работу дата-инженера: новые декораторы TaskFlow API в Apache Airflow для внедрения больших языковых моделей в DAG. Обзор Airflow AI SDK на основе Pydantic AI с практическим примером про анализ отзывов. ИИ в инженерии данных Мультимодальность современных инструментов машинного обучения, когда одна ML-модель может принимать на вход данные...
В поддержку нашего нового курса для дата-инженеров Школа Больших Данных проводит очередной бесплатный митап для аналитиков, архитекторов, инженеров данных, разработчиков, DataOps- инженеров и тех, кто интересуется современными технологиями обработки данных. Trino – это распределенный SQL-движок с массово-параллельной архитектурой и открытым исходным кодом. Он предназначен для работы с большими объемами данных в...
Как избежать потери данных при асинхронной вставке в Clickhouse при сбое сервера и зачем в версию 24.2 добавлен адаптивный тайм-аут очистки буфера: тонкости ETL с колоночной СУБД. Асинхронная вставка с возвратом подтверждения Недавно мы рассказали, чем хороши асинхронные вставки в ClickHouse и отметили, что при их использовании можно настроить параметр...
Коллеги, как обычно, мы идем в ногу со временем и постоянно обновляем наши курсы с учетом выхода новых релизов. Приглашаем вас на обновленный курс по администрированию Apache Kafka, где учтены самые главные изменения относительно предыдущих версий: Архитектура Kafka 4 Эволюция Kafka: от Zookeeper к KRaft Новая архитектура без Zookeeper (KIP-500,...
Можно ли сочетать OLAP и OLTP-нагрузки в едином хранилище и как это сделать: гибридная транзакционно-аналитическая обработка в базах данных, возможности и проблемы этой архитектуры. Что такое HTAP Исторически хранилища данных принято делить на OLAP и OLTP с учетом их оптимизации для аналитических и транзакционных нагрузок. OLTP-системы (Online Transaction Processing) оптимизированы...
Чем синхронная вставка в ClickHouse отличается от асинхронной и как это настроить: лучшие практики и риски загрузки данных в колоночное хранилище. Синхронная вставка данных в ClickHouse Хотя скорость вставки данных в ClickHouse зависит от множества факторов, ее можно ускорить за счет асинхронных вставок, если предварительное пакетирование на стороне клиента невозможно....
Почему не рекомендуется публиковать в Kafka сообщения больших размеров, и как это сделать, если очень нужно: когда приходится перенастраивать конфигурации продюсера, топика и потребителя, и какие это параметры. Почему не нужно публиковать в Kafka сообщения больших размеров Apache Kafka, как и другие брокеры сообщений, оптимизирована для передачи данных небольшого размера....
Как именно формат, сортировка, сжатие и интерфейс передачи данных в ClickHouse влияют на скорость операций загрузки: бенчмаркинговое сравнение от разработчиков колоночной СУБД. В каком формате данные быстрее всего вставляются в ClickHouse Продолжая недавний разговор про вставку данных в ClickHouse, сегодня рассмотрим, ключевые факторы, которые особенно сильно влияют на скорость загрузки...
Почему в одной организации возникает рассогласование данных, чем опасна такая рассинхронизация, как ее обнаружить и устранить: подходы и решения для повышения качества данных. Что такое data silos и как найти локальные «болота данных» Рассогласование в данных возникает при разной логике обработки одной и той же информации. Это мешает принимать объективные...
Как выполняется вставка данных в ClickHouse, от чего зависит ее скорость и каким образом ее повысить: последовательность операций загрузки и ее оптимизации. От чего зависит скорость вставки данных в ClickHouse Поскольку ClickHouse часто используется для построения хранилищ или витрин данных, скорость загрузки данных в эту базу очень важна. Хотя на...