Новые победы вместе с Arenadata: 3 призера конкурса «Проект Года» от GlobalCIO-2020

Мы уже рассказывали о проектах-победителях российского ИТ-конкурса «Проект Года» профессионального сообщества GlobalCIO, представивших корпоративные решения на базе продуктов Arenadata. В 2020 году клиенты Arenadata также вошли в тройку лидеров. Читайте далее, как «Газпром нефть» и ВТБ улучшили свои процессы управления данными с помощью отечественных технологий хранения и аналитики Big Data....

Как вести мониторинг финансовых транзакций в реальном времени с Apache Kafka и Spark в Delta Lake: пример аналитики больших данных

Сегодня рассмотрим пример построения системы аналитики больших данных для мониторинга финансовых транзакций в реальном времени на базе облачного Delta Lake и конвейера распределенных приложений Apache Kafka, Spark Structured Streaming и других технологий Big Data. Читайте далее о преимуществах облачного Delta Lake от Databricks над традиционным Data Lake. Постановка задачи: финансовая...

Apache Spark для инженера данных: 3 полезных инструмента построения ETL-конвейеров

Дополняя наши курсы дата-инженеров полезными примерами, сегодня рассмотрим, как упростить разработку и мониторинг ETL-конвейеров с помощью дополнительных технологий Big Data, совместимых с Apache Spark. Читайте далее, когда и зачем инженеру данных пригодятся SaaS-продукт Prophecy.io, движок StreamSets Transformer и REST-интерфейс Apache Livy, а также как все они связаны со Spark. 3...

3 проблемы с топиками Kafka для администратора кластера и способы их решения

В этой статье рассмотрим типичные проблемы топиков Apache Kafka, с которыми сталкивается каждый администратор Big Data кластера. Читайте далее, почему топики чрезмерно разрастаются, как работает очистка логов, когда старые сообщения могут остаться в почищенных сегментах и какие параметры конфигураций помогут справиться со всем этим. Брокеры и разделы: как устроены топики...

Как сэкономить на AWS-кластере: экономика Big Data и конфигурирование облачных Spark-приложений

В рамках обучения администраторов Apache Hadoop и инженеров Big Data, сегодня поговорим про стоимость аналитики больших данных с помощью Spark-приложений в облачном кластере Amazon Web Services и способы снижения этих затрат за счет конфигурирования заданий и настройки узлов. Читайте в этой статье, как число процессорных ядер в исполнителях Spark-заданий формирует...

Потоковая аналитика больших данных с ksqlDB на Kubernetes: практический пример

В этой статье поговорим про KSQL на примере кейса компании американской компании Pluralsight, которая предлагает различные обучающие видео-курсы для разработчиков ПО, ИТ-администраторов и творческих профессионалов. Читайте далее, как использовать Apache Kafka с Kubernetes для построения надежных систем потоковой аналитики больших данных, а также чем ksqlDB отличается от KSQL. Apache Kafka...

Большие данные с малыми затратами: как снизить стоимость OLAP-аналитики Big Data в Delta Lake на AWS с Apache Kafka и Spark

Хорошие курсы инженеров данных – это не просто обучение отдельной Big Data технологии, такой как Apache Hadoop, Spark или Kafka, а жизненные примеры их практического использования в реальном бизнесе. Поэтому сегодня мы приготовили для вас кейс оптимизации стоимости и скорости OLAP-аналитики больших данных в облачном Delta Lake на Amazon Web...

Быстрая OLAP-аналитика больших данных в Delta Lake c Apache Spark SQL и Presto

В этой статье рассмотрим, как сделать SQL-запросы к колоночному хранилищу больших данных с поддержкой ACID-транзакций Delta Lake еще быстрее с помощью Apache Presto. Читайте далее про синергию совместного использования Apache Spark и Presto в Delta Lake для ускорения OLAP-процессов при работе с Big Data. Еще раз об OLAP: схема звезды...

Как читать медицинские снимки с Apache Spark: Big Data библиотека для быстрой обработки DICOM-файлов

Продвигая наши курсы для разработчиков Spark с примерами реальных систем аналитики больших данных, сегодня рассмотрим библиотеку для чтения файлов формата DICOM от индийской компании Abzooba. Читайте далее, как автоматизировать поиск по миллиардам медицинских изображений с помощью машинного обучения и технологий Big Data: Apache Spark, Hadoop, Kafka, Elasticsearch и Kibana. Что...

Быстрее и безопаснее: потоковая аналитика больших данных для трекинга самолетов

Чтобы показать, насколько разной бывает аналитика больших данных, сегодня рассмотрим кейс международной компании Spidertracks, которая с помощью технологий Big Data создает ИТ-решения для отслеживания, связи и управления безопасностью воздушных судов. Читайте далее, почему для потоковой обработки событий был выбран Kinesis Analytics for SQL, а не конвейер из Apache Kafka и...

Конвейер CDC для Databricks Delta Lake: пример быстрого сбора и аналитики Big Data с Apache Kafka и Spark

Сегодня продолжим разбираться с реализацией CDC-подхода в современных Big Data решениях и погрузимся в Databricks Delta Lake – облачный уровень хранения и аналитики больших данных с поддержкой ACID-транзакций. Читайте далее про переход от ночных ETL-пакетов с Informatica к быстрому обновлению данных в Amazon S3 на конвейере Spark и Kafka. Возможности...

CDC для потоковой аналитики Big Data с Apache Kafka и Spark: 3 практических примера

Вчера мы упоминали про CDC-подход в проектировании транзакционных систем аналитики больших данных на базе Apache Kafka и Spark Streaming. Сегодня рассмотрим подробнее примеры такого применения технологий Big Data и лучшие практики Change Data Capture в потоковой обработке финансовых и других транзакций. Зачем нужны потоковые конвейеры транзакционной обработки Big Data на...

Что не так с real-time обработкой транзакций в конвейере Apache Kafka-Spark Streaming: 3 проблемы и способы их решения

В этой статье рассмотрим особенности совместного использования Apache Kafka и Spark Streaming для обработки финансовых транзакций в режиме онлайн. Читайте далее про типовые кейсы практического применения конвейера аналитики больших данных на базе Kafka и Spark, а также проблемы или технологические особенности такой Big Data системы и пути обхода этих ограничений....

Apache Kafka или Pulsar: что и когда выбирать

В заключение цикла статей о сравнении Apache Kafka с Pulsar, сегодня мы перечислим, когда следует предпочесть второй вариант для построения распределенных масштабируемых систем потоковой аналитики больших данных. Также читайте далее, с какими ограничениями придется мириться в случае выбора этого Big Data фреймворка. 5 случаев, когда Apache Pulsar лучше Kafka При...

3 примера использования Pulsar в production вместо Apache Kafka

Вчера мы опровергали мифы о превосходстве молодого Apache Pulsar над зрелой Kafka, наглядно показав, что именно второй Big Data фреймворк больше подходит для построения по-настоящему масштабных и высоконадежных распределенных масштабируемых систем потоковой аналитики больших данных. Тем не менее, благодаря своим архитектурным особенностям Pulsar постепенно завоевывает собственную нишу и становится все...

Что такое Big Data Reconciliation: согласование больших данных c Apache Spark

Мы уже рассказывали, почему качество данных является важнейшим аспектом разработки и эксплуатации Big Data систем. Приемлемое для эффективного использования качество массивов информации достигается не только с помощью процессов подготовки датасета к машинному обучению и профилирования данных, но и за счет их согласования. Читайте далее, что такое Data reconciliation, зачем это...

CDC-репликация Big Data в реальном времени с Apache Kafka и Debezium в Confluent Cloud

В этой статье поговорим про интеграцию данных с помощью CDC-подхода и репликацию SQL-таблиц из корпоративной СУБД в несколько разных удаленных хранилищ в реальном времени с применением Apache Kafka и Debezium, развернутых в Kafka Connect и Confluent Cloud. Постановка задачи: CDC с Big Data в реальном времени Рассмотрим кейс, который часто...

А можно дешевле: снижаем стоимость аналитики Big Data в приложениях Apache Spark

Вчера мы говорили про ускорение аналитики больших данных в конвейере из множества заданий Apache Spark. Продолжая речь про обучение инженеров данных, сегодня рассмотрим, как снизить стоимость выполнения Spark-приложений, сократив накладные расходы на обработку Big Data и повысив эффективность использования кластерной инфраструктуры. Экономика Big Data систем: распределенная разработка и операционные затраты...

Ускоряем конвейеры Apache Spark: 3 простых способа

Сегодня рассмотрим несколько простых способов ускорить обработку больших данных в рамках конвейера задач Apache Spark. Читайте далее про важность тщательной оценки входных и выходных данных, рандомизацию рабочей нагрузки Big Data кластера и замену JOIN-операций оконными функциями. Оптимизируй это: почему конвейеры аналитической обработки больших данных с Apache Spark замедляются Обычно со...

Сложности перехода: 3 проблемы миграции на Apache AirFlow 2.0 и их решения

В рамках обучения инженеров больших данных, вчера мы рассказывали о новой версии Apache AirFlow 2.0, вышедшей в декабре 2020 года. Сегодня рассмотрим особенности перехода на этот релиз: в чем сложности миграции и как их решить. Читайте далее про сохранение кастомизированных настроек, тонкости работы с базой метаданных и конфигурацию для развертывания...