Недавно мы писали про чтение данных из AWS S3 с помощью PySpark-задний. Продолжая разбираться, как перейти от HDFS к облачным объектным хранилищам, сегодня рассмотрим пример чтения и записи файлов из Google Cloud Storage с помощью Apache Spark. От HDFS к GCS Распределенная файловая система Apache Hadoop (HDFS) уже много лет...
Чтобы сделать наши курсы по Apache Spark для дата-инженеров еще более полезными, сегодня рассмотрим, как PySpark-задания могут считывать данные из корзин объектного хранилища AWS S3, используя Python-пакет boto3. Читайте далее, что представляет собой этот SDK, как использовать его вместе с IAM-ролями, а также как обеспечить безопасность конфиденциальных данных с помощью...
Можно ли применять Apache Spark Structured Streaming для пакетных заданий и в каких случаях это целесообразно. Разбираемся, как устроена потоковая передача событий в Spark Structured Streaming, с какой частотой разные режимы триггеров микропакетной обработки данных запускают потоковые вычисления и что выбрать дата-инженеру. Потоковая передача событий и пакетные задания: versus или...
В июле 2022 года на конференции Data and AI Summit компания Databricks представила новый проект для экосистемы Apache Spark под названием Spark Connect. Что это такое и как оно пригодится разработчикам распределенных приложений и дата-инженерам, читайте далее. Что не так с Apache Spark и зачем нужен новый проект Databricks Появившись...
Сегодня мы продолжим говорить про Apache Spark Structured Streaming и его применение для обновления данных в таблицах Delta Lake. А также на практических примерах разберем, как выполняются основные операции работы с данными средствами Spark Structured Streaming API. Таблицы в Delta Lake Delta Lake – это уровня хранилища данных с открытым...
Продолжая недавний разговор про Apache Spark Structured Streaming, сегодня рассмотрим, как этот движок потоковой обработки данных помогает дата-инженеру реализовать идемпотентную запись в таблицы Delta Lake, а также выполнить операции слияния и обновления/вставки в помощью метода foreachBatch(). Идемпотентность потоковых приложений Apache Spark Идемпотентность – важное свойство распределенных систем, которое гарантирует, что...
Разработка высоконагруженных систем потоковой аналитики больших данных включает не только написание кода, но и его оптимизацию. Поэтому разработчикам приложений Apache Spark Structured Streaming и дата-инженерам полезно знать, как можно повысить эффективность своих Big Data систем. В этой статье мы рассмотрим конфигурации и приемы, которые могут ускорить пакетные и потоковые вычисления....
Мы уже писали про использование криптографии в Apache Spark. Сегодня в рамках обучения дата-инженеров и разработчиков распределенных приложений рассмотрим, как шифровать столбцы датафрейма в PySpark и расшифровывать их с использованием алгоритма шифрования AES. Основы кибербезопасности: ликбез по шифрованию данных Шифрование данных преобразует данные в другую форму или код, чтобы их...
Рассмотрим, как дата-инженеры Airbnb делятся своим опытом перевода корпоративного Data Lake на Apache HDFS в облачное объектное хранилище AWS S3. Почему пришлось переводить аналитические нагрузки с Apache Hive на Iceberg и Spark, и какие результаты это принесло. Предыстория: Data Lake на HDFS и Apache Hive Будучи крупнейшей онлайн-площадкой для размещения...
Сегодня разберем тему, важную для обучения дата-инженеров и разработчиков распределенных Spark-приложений. Почему чтение данных из реляционных баз в Apache Spark может быть медленным и как его ускорить, изменив SQL-запрос или структуру таблицы. JDBC-источники данных для Apache Spark Apache Spark является средством обработки, а не хранения больших данных. Поэтому, чтобы использовать...