Задания, задачи и этапы в Apache Spark

Чем задание в Spark-приложениях отличается от задачи, зачем нужны этапы и при чем здесь драйверы с исполнителями. Разбираемся с основами разработки в самом популярном движке для распределенных вычислений: ликбез для дата-инженеров. Основные концепции Spark-приложений Приложение Spark — это программа, созданная с помощью Spark API и работающая в совместимом с этим...

3 способа подключить сервер Jupyter к защищенному кластеру Spark на Hadoop YARN с Kerberos

Интерактивные блокноты Jupyter стали фактически стандартом де-факто для Data Scientist’ов, использующих Python. Многие дата-инженеры и разработчики Spark тоже используют этот легковесный, но очень удобный инструмент. Однако, чтобы применять его для промышленной разработки Big Data приложений, нужно подключить сервер Jupyter к кластеру Spark. Читайте, как это сделать, если кластер Apache Spark...

Самообслуживаемый сервис Apache Spark Structured Streaming для Delta Lake

В этой статье для обучения дата-инженеров и ИТ-архитекторов рассмотрим, как Apache Spark Structured Streaming помогает реализовать самообслуживаемый сервис потоковой передачи данных в Delta Lake. А также вспомним каноническую 3-хслойную модель этого уровня хранения от Databricks.  Много потоковых сценариев в одном приложении Apache Spark Structured Streaming Мы недавно писали, что архитектуры,...

Модульное тестирование Spark-приложений с Gradle

Специально для обучения дата-инженеров и разработчиков распределенных программ, сегодня рассмотрим подходы к организации модульного тестирования Spark-приложений через классы тестовых данных. Зачем и как генерировать эти классы, где их хранить и при чем здесь система автоматической сборки приложений Gradle. Сборка и тестирование Spark-приложений Модульное тестирование лежит в основе проверки работоспособности программного...

Аккумуляторы и качество данных в Apache Spark

Как Apache Spark организует параллельные вычисления, зачем нужны аккумуляторы и каким образом они помогают организовать мониторинг качества данных в аналитических конвейерах их обработки. Смотрим с точки зрения дата-инженера и разработчика распределенных приложений. Как Apache Spark распараллеливает обработку данных Параллельная обработка — это метод вычислений, при котором работает более одного ЦП...

Оптимизация Apache Spark на платформе Databricks

В этой статье для обучения дата-инженеров и разработчиков распределенных приложений, сегодня разберем опыт ИТ-компании Similarweb, где Apache Spark на платформе Databricks вместо AWS Athena ускорил пакетную обработку данных в 50 раз. Также рассмотрим приемы повышения производительности ODBC-драйвера Databricks для улучшенного взаимодействия с озерами данных. Постановка задачи и ограничения POC для...

Как перевести кластер Apache Spark от YARN в Kubernetes: пошаговый план

Учитывая рост интереса к DevOps-инструментам, сегодня рассмотрим, зачем переводить кластер Apache Spark, управляемый YARN, в Kubernetes, и как это сделать наиболее эффективно. А также разберем, какие системные метрики контейнерных Spark-приложений надо отслеживать и с помощью каких средств. Зачем переводить кластер Apache Spark от YARN на Kubernetes Apache Spark не зря...

Чтение и запись файлов в Google Cloud Storage с Apache Spark

Недавно мы писали про чтение данных из AWS S3 с помощью PySpark-задний. Продолжая разбираться, как перейти от HDFS к облачным объектным хранилищам, сегодня рассмотрим пример чтения и записи файлов из Google Cloud Storage с помощью Apache Spark. От HDFS к GCS Распределенная файловая система Apache Hadoop (HDFS) уже много лет...

Как безопасно читать данные из AWS S3 с Apache Spark и boto3

Чтобы сделать наши курсы по Apache Spark для дата-инженеров еще более полезными, сегодня рассмотрим, как PySpark-задания могут считывать данные из корзин объектного хранилища AWS S3, используя Python-пакет boto3. Читайте далее, что представляет собой этот SDK, как использовать его вместе с IAM-ролями, а также как обеспечить безопасность конфиденциальных данных с помощью...

Как применить триггеры Apache Spark Structured Streaming для пакетных заданий

Можно ли применять Apache Spark Structured Streaming для пакетных заданий и в каких случаях это целесообразно. Разбираемся, как устроена потоковая передача событий в Spark Structured Streaming, с какой частотой разные режимы триггеров микропакетной обработки данных запускают потоковые вычисления и что выбрать дата-инженеру. Потоковая передача событий и пакетные задания: versus или...

Поиск по сайту