В недавней статье про преимущества хранилища метаданных Apache Hive и другие плюсы этого популярного инструмента SQL-on-Hadoop, мы упоминали формат открытых таблиц Iceberg как альтернативу для хранения огромных наборов аналитических данных. Он добавляет высокопроизводительные SQL-подобные таблицы в вычислительные механизмы Spark, Trino, Presto, Flink и Hive. Сегодня рассмотрим подробнее, что такое Apache Iceberg и...
В продолжение недавней статьи для дата-инженеров про альтернативные платформы потоковой передачи событий вместо Apache Kafka, сегодня рассмотрим пример аналитики больших данных средствами Flink SQL, записи результатов в Elasticsearch и их визуализации в Kibana. Читайте далее, чем Redpanda отличается от Kafka, а Flink – от Apache Spark с точки зрения потоковой...
В рамках обучения разработчиков Spark-приложений, аналитиков данных и дата-инженеров, сегодня рассмотрим, как улучшить и визуализировать понимание обработки данных в этом Big Data фреймворке. Читайте далее про API встроенных механизмов наблюдения за качеством данных в Apache Spark и открытые библиотеки профилирования на примере Deequ. 2 уровня абстракции мониторинга Spark-приложений для дата-инженера...
Анализ данных в рамках пользовательский сеансов (сессий) – довольно востребованный кейс в Apache Spark, который не так просто реализовать из-за особенностей потоковой и пакетной обработки, а также эксплуатационных расходов. Сегодня рассмотрим, как работают сеансовые окна Spark Structured Streaming и каковы ограничения этого фреймворка. Что такое сеансовые окна: краткий ликбез по...
Чтобы добавить в наши курсы для дата-инженеров по технологиям Apache Kafka, Spark, AirFlow, NiFi, Flink и Greenplum, еще больше практических примеров, сегодня разберем кейс ритейлера Леруа Мерлен. Читайте далее, как сотрудники российского отделения этой международной компании интегрировали в единую платформу более 350 реляционных СУБД и NoSQL-источников с помощью CDC-подхода на...
В этой статье для дата-инженеров рассмотрим кейс компании PayPal, которая переводит свои аналитические рабочие нагрузки из локального кластера Apache Spark в Google Cloud Processing. Читайте далее, чем это решение оказалось лучше выполнения Spark-заданий в кластере DataProc с использованием данных BigQuery и облачного хранилища Google (GCS, Google Cloud Storage) для потоковой...
Продвигая наш новый курс по графовым алгоритмам на больших данных, сегодня рассмотрим, почему концепция графов сегодня так востребована в Big Data и Machine Learning. Вас ждет краткий ликбез по модулю GraphX в Apache Spark и его отличия от API GraphFrames, а также особенности кластерной обработки и сохранения данных графа свойств....
В этой статье для разработчиков Spark-приложений и дата-аналитиков рассмотрим новый оптимизатор этого фреймворка, Radiant. Он основан на SQL-оптимизаторе Catalyst и представляет собой open-source проект от энтузиастов сообщества Apache Spark. Читайте далее, чем хорош Spark-Radiant и как использовать его для оптимизации SQL-запросов при аналитике больших данных. Что такое SQL-оптимизатор Spark-Radiant и...
В этой статье для разработчиков распределенных приложений Apache Spark, администраторов SQL-on-Hadoop и дата-аналитиков рассмотрим особенности аутентификации удаленного пользователя, а также отслеживание измененных данных в таблицах Apache Hive. Читайте далее, зачем ограничивать доступ к keytab-файлу в кластерах с поддержкой защищенного протокола Kerberos, а также как реализовать отслеживание медленно меняющихся измерений в...
В рамках обучения разработчиков Spark-приложений, сегодня рассмотрим, как сохранить датафрейм в памяти вне кучи исполнителя и зачем это нужно. Вас ждет краткий ликбез по управлению памятью в Apache Spark с описанием настраиваемых конфигураций. Также на простом практическом примере разберем, как это сделать и где в пользовательском веб-интерфейсе фреймворка посмотреть результаты...