Машинное обучение с Apache Spark: битва пакетов или отличия библиотек MLLib от ML

Сегодня рассмотрим Apache Spark с точки зрения Data Science специалиста: поговорим про сходства и отличия библиотек машинного обучения в этом фреймворке. Также ответим на вопрос «Spark ML vs MLLib», разберем, зачем Data Scientist’у и аналитику больших данных нужны курсы по Apache Spark, а в заключение отметим наиболее важные улучшения библиотеки...

Еще 4 особенности бакетирования таблиц в Apache Spark и 7 конфигураций их настройки

Продолжая разбирать особенности бакетирования таблиц в Apache Spark, сегодня мы рассмотрим несколько примеров, как дата-инженер и аналитик данных могут работать с этим методом оптимизации SQL-запросов. Также читайте далее, какие конфигурации Apache Spark SQL связаны с бакетированием таблиц и что нового появилось в 3-ей версии этого Big Data фреймворка, чтобы такой...

Apache Spark для дата-инженеров: трудности бакетирования и способы их решения

Бакетирование таблиц в Apache Spark – один из самых популярных методов оптимизации производительности задач последовательного чтения данных. Сегодня поговорим про сложности бакетирования с точки зрения дата-инженера, а также рассмотрим факторы, от которых зависит оптимальное количество бакетов. Большая проблема маленьких файлов и бакетирование таблиц в Apache Spark Напомним, бакетирование ускоряет выполнение...

Масштабируемая видеоаналитика в реальном времени с нейросетями YOLO на Apache Kafka, Spark Structured Streaming и Cassandra

В рамках обучения аналитиков Big Data и разработчиков Apache Spark и Kafka, сегодня рассмотрим кейс ИТ-компании Southworks по онлайн-обработке потокового видео как наглядный пример эффективного сочетания этих потоковых фреймворков с пакетными задачами. Читайте далее, как реализовать лямбда-архитектуру масштабируемой Big Data системы на базе Apache Kafka, Spark Structured Streaming и NoSQL-СУБД...

На заметку разработчику: 3 причуды Apache Spark и как с ними бороться

Развивая наши курсы по Apache Spark, сегодня мы рассмотрим несколько особенностей, с разработчик которыми может столкнуться при выполнении обычных операции, от чтения архивированного файла до обращения к сервисам Amazon. Читайте далее, что не так с методом getDefaultExtension(), зачем к AWS S3 так много коннекторов и почему PySpark нужно дополнительно конфигурировать...

Вспомнить все: 6 сегментов памяти Apache Spark и параметры их конфигурирования

В этой статье продолжим говорить про обучение разработчиков Apache Spark и рассмотрим, какие сегменты памяти есть в этом Big Data фреймворке и как с ними работать наиболее эффективно. Читайте далее, почему процессы PySpark и SparkR потребляют внешнюю память, чем пользовательская память кучи JVM отличается от памяти хранилища и какие конфигурации...

Как помочь Apache Spark SQL обрабатывать большие датасеты быстрее: 5 простых способов

Продолжая разговор про практическое обучение разработчиков Apache Spark, сегодня рассмотрим пример повышения скорости выполнения SQL-запросов к большому датафрейму. Читайте далее, как определить и исправить асимметрию распределения данных по разделам, зачем добавлять контрольные точки в длинные DAG и в чем здесь опасность, чем хороша широковещательная трансляция, для чего фильтровать данные перед...

Как устранить дубли в датасете: 5 методов для разработчика Apache Spark

На практике каждый аналитик Big Data и Data Scientist часто сталкивается с удалением дублирующихся значений в датасете. Поэтому, чтобы добавить в наши курсы по Apache Spark еще больше полезных примеров, сегодня рассмотрим 5 простых способов решения этой востребованной задачи. Читайте далее, чем distinct() отличается от dropDuplicates(), а reduceByKey() - от...

От пакетов к потокам с Kafka и Flink: аналитика больших данных по пользовательским сеансам в Spotify

Сегодня рассмотрим преимущества потоковой обработки данных с Apache Kafka и Flink над пакетными Big Data технологиями в виде Hadoop, Spark и Oozie. В качестве примера разберем реальный кейс аналитики больших данных по пользовательским сеансам в музыкальном онлайн-сервисе Spotify, а также возможность замены Apache Flink на Spark Structured Streaming. От рекламы...

Как упростить работу с DWH и Data Lake: DBT + Apache Spark в AWS

Сегодня рассмотрим, что такое Data Build Tool, как этот ETL-инструмент связан с корпоративным хранилищем и озером данных, а также чем полезен дата-инженеру. В качестве практического примера разберем кейс подключения DBT к Apache Spark, чтобы преобразовать данные в таблице Spark SQL на Amazon Glue со схемой поверх набора файлов в AWS...

От контекста до драйвера: что под капотом Spark-приложения

Поскольку наши курсы по Apache Spark предполагают практическое обучение с глубоким погружением в особенности разработки и настройки распределенных приложений, сегодня рассмотрим, как именно выполняются кластерные вычисления в рамках этого Big Data фреймворка. Читайте далее, из чего состоит архитектура Spark-приложения, как связаны SparkContext и SparkConf, а также зачем ограничивать размер драйвера...

Зачем нужны коммитеры S3A: решаем проблемы совместимости Amazon S3 с Hadoop HDFS

В поддержку курса Hadoop для инженеров данных сегодня разберем, в чем проблема безопасной отправки заданий и файлов в облачное хранилище Amazon S3 и как ее решить. Читайте далее, почему AWS S3 не дает гарантий согласованности как HDFS, из-за чего S3Guard не обеспечивает транзакционность и как настроить коммиттеры S3A для Spark...

Как Spark-приложению выполнять миллионы операций в секунду с данными в AWS S3

Чтобы сделать курсы Hadoop и Spark для инженеров данных еще более интересными, сегодня мы рассмотрим кейс фудтех-компании iFood - лидера рынка доставки еды в странах Латинской Америки. Читайте далее, в чем проблема быстрых операций со множеством файлов в облачном хранилище Amazon S3 и как ее решить с помощью префиксов корзины...

Как сэкономить на AWS со Spark и Kubernetes: спотовые узлы и готовые платформы

Продолжая разговор про оптимизацию приложений Apache Spark в Kubernetes, сегодня разберем, как сократить расходы на облачный кластер с помощью спотовых узлов. А в качестве практического примера рассмотрим кейс компании Weather2020, дата-инженеры которой смогли всего за 3 недели развернуть террабайтные ETL-конвейеры в AWS с AirFlow и Spark на Kubernetes без глубокой...

Оптимизация Apache Spark на Kubernetes: 4 способа ускорить контейнеризованные приложения

Недавно мы рассказывали об особенностях запуска приложений Apache Spark в кластере Kubernetes с учетом новшеств релиза 3.1.1, где с этого варианта развертывания снят экспериментальный режим. В дополнение к ранее рассмотренным способам оптимизации Спарк-приложений, сегодня разберем, как инженеру Big Data ускорить их при запуске на платформе K8s. Как ускорить Spark-приложения на...

7 функций общей доступности Kubernetes в Apache Spark 3.1.1: мартовский релиз 2021

Вчера мы упоминали, что с марта 2021 года в версии Apache Spark 3.1.1 с развертывания на Kubernetes снят экспериментальный режим, внесено множество улучшений для стабильной работы контейниризованных приложений и добавлены другие полезные обновления. Читайте далее, почему развертывание Spark на Kubernetes стало еще проще, как реализуется плавное завершение работы узла без...

3 достоинства и пара недостатков Apache Spark на Kubernetes

С учетом тренда на контейнеризацию при разработке и развертывании любых технологий, в т.ч. Big Data, сегодня рассмотрим плюсы и минусы совместного использования Apache Spark с Kubernetes. Читайте далее, как отправить Спарк-задание в кластер Кубернетес и почему это сэкономит затраты на вашу инфраструктуру аналитики больших данных, не повысив производительность отдельных приложений,...

5 советов по совместному использованию Apache Spark и PostgreSQL

В этой статье по обучению дата-инженеров и разработчиков Big Data рассмотрим, как эффективно записать большие данные в СУБД PostgreSQL с применением Apache Spark. Читайте далее, чем отличается foreach() от foreachBatch(), как это связано с количеством подключений к БД, асимметрией разделов и семантикой доставки сообщений. Как Spark-приложение записывает данные в PostgreSQL...

Февральская новинка-2021: Apache Spark премиум-класса в Delta Lake Databricks на Google Cloud

Продолжая вчерашний разговор про Delta Lake на базе Apache Spark от Databricks, сегодня мы расскажем одну из последних новостей о запуске этого решения на Google Cloud с середины февраля 2021 года. Читайте далее, чем хороша эта проприетарная Big Data платформа для аналитики больших данных на Spark, инструментах визуализации и MLOps,...

Как вести мониторинг финансовых транзакций в реальном времени с Apache Kafka и Spark в Delta Lake: пример аналитики больших данных

Сегодня рассмотрим пример построения системы аналитики больших данных для мониторинга финансовых транзакций в реальном времени на базе облачного Delta Lake и конвейера распределенных приложений Apache Kafka, Spark Structured Streaming и других технологий Big Data. Читайте далее о преимуществах облачного Delta Lake от Databricks над традиционным Data Lake. Постановка задачи: финансовая...