DataOps и инженерия больших данных: 10 лучших практик от корпорации DNB

Чтобы добавить в наши курсы для дата-инженеров еще больше реальных примеров и лучших DataOps-практик, сегодня мы расскажем, как специалисты крупной норвежской компании DNB обеспечивают надежный доступ к чистым и точным массивам Big Data, применяя передовые методы проектирования данных и реализации конвейеров их обработки. В этой статье мы собрали для вас...

Борьба за качество больших данных в Airbnb: 3 направления для Big Data Quality

Аналитика больших данных напрямую связана с их качеством, которое необходимо отслеживать на каждом этапе непрерывного конвейера их обработки (Pipeline). Сегодня рассмотрим методы и средства обеспечения Data Quality на примере корпорации Airbnb. Читайте далее про лучшие практики повышения качества больших данных от компании-разработчика самого популярного DataOps-инструмента в мире Big Data, Apache...

Комбо Apache Spark и Greenplum для быстрой аналитики больших данных: разбор интеграционного коннектора

Продолжая разговор про обучение Apache Spark для инженеров данных на практических примерах, сегодня разберем, как организовать интеграцию этого Big Data фреймворка с MPP-СУБД Greenplum. В этой статье мы расскажем о коннекторе Greenplum-Spark, который позволяет эффективно связывать эти средства работы с большими данными, выстраивая аналитический конвейер их обработки (data pipeline). Типовые...

Как создать свой коннектор Apache Spark: пример интеграции с Tableau

Говоря про практическое обучение Apache Spark для дата-инженеров, сегодня рассмотрим особенности разработки собственного коннектора для этого фреймворка на примере его интеграции с BI-системой Tableau. Читайте далее, как конвертировать Spark RDD в нужный формат и сделать свой коннектор удобным для пользователей. Интеграция Spark с внешними источниками данных через коннекторы Apache Spark...

Помнить все: как устранить утечки памяти в приложениях Apache Spark – 7 советов от Disney

Сегодня рассмотрим Apache Spark с важной для разработчиков распределенных приложений точки зрения, разобрав как в рамках этого Big Data фреймворка справиться с утечками данных при их потоковой передаче. Читайте далее, почему возникает OutOfMemory Exception в Spark-приложениях и как дата-инженеры компании Disney решили эту проблему с нехваткой памяти для JVM. Зачем...

Как очистить большие данные для Apache Spark SQL: краткий обзор Cleanframes

Поскольку курсы по Apache Spark нужны не только разработчикам распределенных приложений, но и аналитикам больших данных с дата-инженерами, сегодня мы рассмотрим, какие средства этого фреймворка позволяют выполнять очистку данных и повышать их качество. Читайте далее, что такое Cleanframes в Spark SQL, чем полезна эта библиотека и каковы ее ограничения. Apache...

Как устроен конвейер аналитики больших данных на Apache Kafka и Druid в Netflix

В этой статье разберем, что такое прикладная аналитика больших данных на примере практического использования Apache Kafka и Druid в Netflix для обработки и визуализации метрик пользовательского поведения. Читайте далее, зачем самой популярной стриминговой компании отслеживать показатели клиентских устройств и как это реализуется с помощью Apache Druid, Kafka и других технологий...

Зачем вам UNION вместо JOIN в Apache Druid и семплирование больших данных в Spark Streaming: пример потоковой аналитики Big Data

Недавно мы рассказывали про систему онлайн-аналитики Big Data на базе Apache Kafka, Spark Streaming и Druid для площадки рекламных ссылок Outbrain, а затем на этом же кейсе рассматривали, зачем нужен Graceful shutdown в потоковой обработке больших данных. Сегодня в рамках этого примера разберем, как снизить нагрузку при потоковой передаче множества...

3 метода векторизации слов в PySpark

Продолжаем говорить о NLP в PySpark. После того как тексты обработаны: удалены стоп-слова и проведена лемматизация — их следует векторизовать для последующей передачи алгоритмам Machine Learning. Сегодня мы расскажем о 3-x методах векторизации текстов в PySpark. Читайте в этой статье: применение CountVectorizer для подсчета встречаемости слов, уточнение важности слов с...

Почему вам нужно обучение разработке в Apache Kafka: 4 причины выбрать курсы от Школы Больших Данных

Сегодня мы расскажем про наши новые курсы по Apache Kafka для разработчиков Big Data. Читайте далее, зачем мы объединили тренинг по Kafka Streams и обучение интеграции этой платформы потоковой обработки событий с другими системами. Также вы узнаете, насколько новый комплексный курс по Apache Kafka полезен программистам распределенных приложений и выгоден...

Чем отличаются Apache AirFlow и Luigi: выбираем оркестратор для Big Data Pipeline’ов

Продвигая наши курсы по Apache AirFlow для инженеров Big Data, сегодня расскажем, чем этот фреймворк отличается от Luigi – другого достаточно известного инструмента оркестровки ETL-процессов и конвейеров обработки больших данных. В этой статье мы собрали для вас сходства и отличия Apache AirFlow и Luigi, а также их достоинства и недостатки,...

Не только AirFlow: Apache Luigi и еще 3 ETL-оркестратора для Big Data Pipeline’ов

Чтобы максимально приблизить обучение Airflow к практической работе дата-инженера, сегодня мы рассмотрим, какие еще есть альтернативы для оркестрации ETL-процессов и конвейеров обработки больших данных. Читайте далее, что такое Luigi, Argo, MLFlow и KubeFlow, где и как они используются, а также почему Apache Airflow все равно остается лучшим инструментом для оркестрации...

Что такое Graceful shutdown в Spark Streaming: основы Big Data для начинающих

Продолжая разбирать, как работает аналитика больших данных на практических примерах, сегодня мы рассмотрим, что такое Graceful shutdown в Apache Spark Streaming. Читайте далее, как устроен этот механизм «плавного» завершения Спарк-заданий и чем он полезен при потоковой обработке больших данных в рамках непрерывных конвейеров на базе Apache Kafka и других технологий...

Веб-реклама, ретаргетинг и проблемы потоковой аналитики больших данных с Apache Kafka, Spark Streaming и Druid: кейс платформы Outbrain

Современная аналитика больших данных ориентируется на обработку Big Data в реальном времени. Такие вычисления «на лету» позволяют в режиме онлайн узнавать о критически важных производственных показателях и оперативно понимать клиентские потребности. Это существенно ускоряет и автоматизирует цикл принятия управленческих решений в соответствии с требованиями сегодняшнего бизнеса. Обычно для реализации архитектуры...

Предобработка текстов на русском в PySpark

В одной из прошлых статей мы говорили о методах NLP (natural language processing) в PySpark. Сегодня мы покажем, как обработать реальный датасет, который содержит тексты на русском языке. Читайте у нас: удаление знаков пунктуации, символов и стоп-слов, токенизация и лемматизация на примере новостей на русском языке. Датасет с текстами на...

5 этапов продуктивной миграции в облачный Hadoop на базе Google Dataproc

Сегодня поговорим про особенности перехода с локального Hadoop-кластера в облачное SaaS-решение от Google – платформу Dataproc. Читайте далее, какие 5 шагов нужно сделать, чтобы быстро развернуть и эффективно использовать облачную инфраструктуру для запуска заданий Apache Hadoop и Spark в системах хранения и обработки больших данных (Big Data). Шаги переноса Data...

Как работает облачная аналитика больших данных на Apache Hadoop и Spark в Dataproc

В этой статье рассмотрим архитектуру и принципы работы системы хранения, аналитической обработки и визуализации больших данных на базе компонентов Hadoop, таких как Apache Spark, Hive, Tez, Ranger и Knox, развернутых в облачном Google-сервисе Dataproc. Читайте далее, как подключить к этим Big Data фреймворкам BI-инструменты Tableau и Looker, а также что обеспечивает...

Как Apache AirFlow помог Airbnb масштабировать Big Data Pipeline и управлять накладными расходами

Вчера мы рассматривали проблему управления накладными расходами в сложных конвейерах обработки больших данных на примере использования Apache AirFlow в агрегаторе аренды частного жилья Airbnb. Сегодня разберем, как именно инженеры компании решили проблему роста накладных расходов, отделив бизнес-логику от логики оркестрации в конвейерах Spark-заданий. Читайте далее про принципы проектирования Big Data...

Почему ваш Big Data Pipeline такой медленный: 5 причин роста накладных расходов на примере использования Apache AirFlow в Airbnb

Продолжая разговор про конвейеры обработки больших данных, сегодня рассмотрим пример использования Apache AirFlow в агрегаторе аренды частного жилья Airbnb. Читайте далее, в чем коварство накладных расходов при росте ETL-операций и других data pipeline’ов по запуску и выполнению заданий Spark, Hadoop и прочих технологий Big Data. Еще в этой статье разберем,...

Apache Kafka, микросервисы и проблема удаления данных: 5 практических примеров

Чтобы сделать наши курсы по Apache Kafka для разработчиков Big Data систем еще более интересными, а обучение – запоминающимся, сегодня мы рассмотрим еще несколько примеров реализации микросервисной архитектуры на этой стриминговой платформе. А также поговорим про проблемы удаления данных в этой архитектурной модели, разобрав кейс компании Twitter по построению корпоративного...

Изменение базового тарифа с 1 января 2026 года Подробнее