Как LinkedIn построила масштабируемую инфраструктуру конвейеров машинного обучения, развернув модели TensorFlow на Apache Kafka, Spark и Hadoop YARN. Что такое платформа TonY, как она работает, почему изначально вычислительная парадигма MapReduce не очень хорошо подходила для глубокого обучения и как это исправить через конфигурацию настроек YARN. MLOps и проблемы глубокого обучения...
Зачем маркировать DAG в Apache AirFlow тегами, как их задать и где это пригодится дата-инженеру. А также еще разберем, какими свойствами должен обладать хорошо спроектированный конвейер обработки данных и как они улучшают их качество. Тегирование DAG в Apache AirFlow Когда дата-инженер работает с несколькими конвейерами данных, помнить все зависимости между...
В этой статье для обучения дата-инженеров рассмотрим, как организовать сбор измененных данных из реляционных СУБД, построив CDC-конвейер с помощью Apache NiFi. А также разберем, зачем процессоры этого потокового ETL-маршрутизатора используют технологию веб-хуков. ETL-конвейер для DWH и Data Lake В общем случае сбор данных из реляционных и нереляционных источников и построение...
Интерактивные блокноты Jupyter стали фактически стандартом де-факто для Data Scientist’ов, использующих Python. Многие дата-инженеры и разработчики Spark тоже используют этот легковесный, но очень удобный инструмент. Однако, чтобы применять его для промышленной разработки Big Data приложений, нужно подключить сервер Jupyter к кластеру Spark. Читайте, как это сделать, если кластер Apache Spark...
Захват измененных данных считается довольно известным паттерном организации ETL-процессов для корпоративных хранилищ и озер данных. Как реализуется CDC-технология, по каким шаблонам, что их ограничивает и чем опасен дрейф изменений в Change Data Capture. Паттерны и принципы реализации захвата измененных данных Эффективность эксплуатации озера данных зависит от ETL-процессов, поскольку объемы данных...
В этой статье рассмотрим настройку инфраструктуры Kubernetes для потоковой платформы комплексных мобильных приложений на основе Apache Kafka. Что поможет добиться оптимальной масштабируемости приложений-потребителей и высокой доступности всей Big Data системы. Проблемы масштабирования платформы Grab из приложений-потребителей Apache Kafka Grab считается ведущей платформой суперприложений в 8 странах Юго-Восточной Азии, которая предоставляет...
Сегодня рассмотрим, как оптимизировать потребление памяти в приложениях Apache Flink, разобрав основные принципы работы и конфигурации настройки памяти этого вычислительного фреймворка. А также перечислим типовые ошибки, с которыми дата-инженер может столкнуться при разработке и эксплуатации Flink-приложений Компоненты памяти в Apache Flink Apache Flink обеспечивает эффективные рабочие нагрузки поверх JVM, строго...
Мы уже писали о важности резервного копирования данных в Apache HBase на примере ИТ-компании Clairvoyant. Сегодня рассмотрим опыт индийской компании Myntra, которая предложила простую методику создания инкрементных бэкапов для Apache HBase 2.1.4 и Hadoop 2.7.3, а также восстановления нужных данных из этих резервных копий в BLOB-хранилищах по требованию пользователя. 5...
Что такое SQL-оператор VACUUM, зачем эта команда нужна в Greenplum и как она работает. Разбираемся с таблицами системного каталога и тонкостями ускорения SQL-запросов в самой популярной MPP-СУБД. Что такое сборка мусора в Greenplum и PostgreSQL Напомним, в объектно-реляционной базе данных PostgreSQL, на которой основана MPP-СУБД Greenplum, о чем мы писали...
Хотя Apache AirFlow считается достаточно зрелой платформой оркестрации рабочих процессов, при практическом использовании этого фреймворка дата-инженер может столкнуться с некоторыми сложностями. Одной из таких проблем являются так называемые «зомби-задачи». Разбираемся, чем они опасны, и как от них избавиться. Что такое зомби-задачи и чем они опасны В Unix-подобных операционных системах есть...