4 модели потоковой парадигмы обработки данных

Чем пакетная парадигма обработки данных отличается от пакетной и как она реализуется на практике: принципы работы и воплощение в Big Data на примере Apache Spark, Kafka и Flink. Еще раз о разнице потоковой и пакетной парадигмы обработки данных Пакетная обработка и потоковая обработка — это две разные парадигмы обработки данных....

Обратное давление в потоковой передаче событий

Что означает термин backpressure и зачем создавать обратное давление в streaming-системах: разбираемся с методами управления пропускной способностью потоковой передачи событий на примере Apache Kafka, Flink, Spark и NiFi. Что такое обратное давление: backpressure в конвейерах потоковой обработки данных Понять, как работает сложная концепция, проще всего на простых примерах. Это общее...

4 стратегии мультирегионального развертывания Apache Kafka

Завершая цикл статей про мультирегиональную репликацию кластеров Apache Kafka, сегодня поговорим про стратегии развертывания топологий, предлагаемых компанией Confluent. Принципы архитектуры, сравнение, сценарии, критерии выбора. Критерии выбора топологии репликации кластера Apache Kafka Для повышения надежности и производительность потоковой обработки данных с использованием Apache Kafka кластера этой платформы рекомендуется располагать в разных...

Реализация CDC из PostgreSQL в Apache Kafka с коннектором Debezium

Сегодня я покажу на практическом примере, как реализовать потоковый захват изменения данных из таблицы PostgreSQL и их репликацию в Apache Kafka с помощью Debezium. Создаем и настраиваем свой коннектор на платформе Upstash. Постановка задачи Паттерн захвата измененных данных (CDC, Change Data Capture) является одним из самых распространенных в инженерии данных....

4 способа реализации мультирегиональной репликации Apache Kafka

Продолжая разговор про межрегиональную репликацию Apache Kafka, сегодня рассмотрим 4 способа ее реализации: мультирегиональный кластер, MirrorMaker 2, Cluster Linking в Confluent Server и Confluent Replicator. Чем георепликация Kafka с MirrorMaker 2 отличается от решений Confluent и что выбирать для различных сценариев. Мультирегиональный кластер Confluent Геораспределенная репликация реплицирует данные по кластерам...

2 решения Confluent для мультирегиональной георепликации Apache Kafka

Недавно мы писали про мультирегиональную репликацию Apache Kafka. Сегодня рассмотрим, как выполнить геораспределенную репликацию с помощью Cluster Linking в Confluent Server и Kafka Connect с Confluent Replicator. Cluster Linking для Apache Kafka Связанные кластеры представляют собой 2 или более кластера в разных географических регионах. В отличие от топологии растянутого кластера,...

Мультирегиональная репликация Apache Kafka: кластерные топологии

Какую топологию может иметь кластер Apache Kafka при межрегиональной репликации по нескольким ЦОД и как это реализовать. Чем брокеры-наблюдатели отличаются от подписчиков в Confluent Server и при чем здесь конфигурация подтверждений acks в приложении-продюсере. Принципы репликации данных в Apache Kafka Будучи средством интеграции информационных систем в режиме реального времени, Apache...

Сколько стоит инфраструктура Apache Kafka: 2 главные статьи затрат

Какие инфраструктурные компоненты самые дорогие в эксплуатации популярной платформы потоковой передачи сообщений и как снизить затраты на сетевые ресурсы и хранилища данных при использовании Apache Kafka. TCO для Apache Kafka: что учитывать в расчете затрат Поскольку Apache Kafka используется для интеграции информационных систем в режиме реального времени, она становится критически...

3 условия соединения многораздельных потоков в Kafka Streams

Почему нельзя просто взять и соединить потоки Kafka Streams с разным числом разделов, и как это все-таки сделать без изменения конфигурации топика. Почему нельзя просто взять и соединить потоки Kafka Streams с разным числом разделов Kafka Streams – это клиентская Java-библиотека для разработки потоковых приложений, которые работают с данными, хранящимися...

Динамическое и статическое членство потребителей Apache Kafka

Чем group.instance.id отличается от group.id, зачем нужен member.id, каковы преимущества статического членства в группе потребителей перед динамическим и какие механизмы Kafka обеспечивают ребалансировку клиентских приложений. Еще раз про группы потребителей Apache Kafka Напомним, группы потребителей в Apache Kafka нужны для логического объединения нескольких потребителей с целью повышения надежности потоковой системы....

Контакты авторизированного учебного центра
«Школа Больших Данных»
Адрес:
127576, г. Москва, м. Алтуфьево, Илимская ул. 5 корпус 2, офис 319, БЦ «Бизнес-Депо»
Часы работы:
Понедельник - Пятница: 09.00 – 18.00
Остались вопросы?
Звоните нам +7 (495) 414-11-21 или отправьте сообщение через контактную форму. Также вы можете найти ответы на ваши вопросы в нашем сборнике часто задаваемых вопросов.
Оставьте сообщение, и мы перезвоним вам в течение рабочего дня
Я даю свое согласие на обработку персональных данных и соглашаюсь с политикой конфиденциальности.
Или напишите нам в соц.сетях
Поиск по сайту