Тонкости оптимизации SQL-запросов в Apache Flink с Calcite

Как оптимизатор Calcite в Apache Flink переводит SQL-команды в задания потоковой и пакетной обработки и какие приемы могут ускорить их выполнение. Разбираемся, чем полезны интерфейсы пользовательских коннекторов источника и подсказки запросов. Flink SQL в пакетной и потоковой обработке данных Apache Flink позволяет разрабатывать распределенные приложения потоковой обработки больших данных, предоставляя...

Автомасштабирование и развертывание Apache Flink в GCP

В этой статье для дата-инженеров и разработчиков Flink-приложений рассмотрим, как связаны диспетчеры задач и заданий, зачем настраивать автоматическое масштабирование кластера и как это сделать с помощью Google Auto Scaler в облачной инфраструктуре этого провайдера. Роль диспетчера заданий в Apache Flink и механизмы отказоустойчивости Apache Flink — отличный фреймворк создания приложений...

Выявление мошенничества в реальном времени с Apache Flink

Чтобы добавить в наши курсы по аналитики больших данных еще больше практически примеров, сегодня рассмотрим, как современные технологий Big Data помогают в реальном времени выявлять телекоммуникационные мошенничества. Почему для антифрод-задач особенно подходит Apache Flink с его потоковом движком обработки данных и за счет чего этот фреймворк такой быстрый. Антифрод в...

Перекосы данных в Apache Flink и что с ними делать: MapReduce Combiner и Bundle оператор

Мы уже разбирали некоторые советы оптимизации Flink-приложений, связанные с неравномерным распределением данных по вычислительным узлам. Сегодня рассмотрим, как при этом пригодится паттерн MapReduce Combiner, который часто используется в экосистеме Apache Hadoop и вместо него лучше применить Bundle оператор, доступный с версии Flink 1.15. Проблема неравномерного распределения в Big Data вообще...

Под капотом источников данных Apache Flink

Чтобы сделать наши курсы по Apache Flink еще более полезными для дата-инженеров и разработчиков распределенных приложений потоковой аналитики больших данных, сегодня разберем, как работают источники данных потоковой обработки на примере топиков Kafka. Источники данных в Apache Flink Наряду с Apache Spark, Flink также является популярным фреймворком пакетной и потоковой обработки...

Как оптимизировать приложения Apache Flink в production: 5 советов инженеру

В этой статье для обучения дата-инженеров и разработчиков приложений потоковой аналитики больших данных рассмотрим, на что следует обратить внимание при развертывании Apache Flink в реальных проектах. Обработка опоздавших данных, тонкости сериализации, проблемы неравномерного распределения и большие состояния заданий. Обработка опоздавших данных в Apache Flink В потоковой обработке данных, которую поддерживает...

Строго однократная доставка сообщений в потоковой обработке данных с Apache Flink и Kafka

Как Apache Flink реализует строго однократную доставку событий в потовой обработке данных с помощью контрольных точек для записи данных в реляционную базу, используя функцию TwoPhasedCommitSink(), основанную на механизме согласованных snapshot’ов 35-летней давности и Kafka Transaction API. Трудности строго однократной доставки в потоковой обработке данных Распределенная обработка потоков с отслеживанием состояния...

MLOps для Apache Flink с MLeap

Сегодня рассмотрим, как реализовать MLOps-идеи при разработке приложений Apache Flink с использованием MLeap, библиотеки сериализации для моделей машинного обучения. Зачем инженеры GetInData разрабатывали для этого свой коннектор и как его использовать на практике. Что такое MLeap и при чем здесь MLOps Будучи популярным вычислительным движком для потоковой аналитики больших данных,...

Потоковый CEP и CDC с Apache Flink SQL: JDBC-коннектор от GetIndata

Мы уже писали про поиск сложных событий при их потоковой обработке средствами Apache Flink. Продолжая эту важную для обучения дата-инженеров тему, сегодня рассмотрим, как CDC-коннектор от GetIndata упрощает запуск распознавание шаблонов на потоках данных из многих источников. Проблемы захвата измененных данных из реляционной базы с помощью JDBC-драйвера и способы их...

Окна и водяные знаки: потоковая обработка данных с Apache Flink

Продолжая разговор про оконные операции в Apache Flink для потоковой аналитики больших данных, сегодня рассмотрим, как это связано с другим важным концептом потоковой обработки событий – водяным знаком. Что такое Watermark и каковы стратегии его генерации в Apache Flink: самое главное для дата-инженера. Потоковая синхронизация данных c SQL для Flink...

Поиск по сайту