Еще одна архитектура данных: Streamhouse с Apache Paimon

Что не так с архитектурой данных Lakehouse, зачем разработчики Apache Flink создали на основе табличного хранилища новую дата-платформу, чем хорош подход Streamhouse и как устроен Apache Paimon. Что такое архитектура данных Streamhouse Не успели дата-архитекторы освоиться с Lakehouse – архитектурой данных, которая объединяет преимущества хранилищ и озер данных, комбинируя масштабируемость...

Что обеспечивает высокую доступность приложений Apache Flink

Как работает Flink-приложение, из каких компонентов состоит распределенный кластер и как сделать его отказоустойчивым. Архитектура и принципы работы высокой доступности Apache Flink. Архитектура Flink-приложения: ключевые компоненты и связь между ними Перед тем, как погружаться в средства обеспечения высокой доступности Flink-приложения, вспомним базовые принципы его работы. Сам по себе Apache Flink...

Возможности Apache Flink для разработчика: 3 API фреймворка

Какие возможности Apache Flink предоставляет разработчику и как их использовать: краткий обзор существующих API и потоковых примитивов. Потоковые примитивы и низкоуровневый API Будучи популярным фреймворком для stateful-вычислений над неограниченными и ограниченными потоками данных, Apache Flink предоставляет несколько API на разных уровнях абстракции и предлагает специальные библиотеки для различных сценариев. На...

Под капотом задания Apache Flink: 3 этапа преобразования

Как планируются и исполняются задания Apache Flink: от пользовательского Java-кода до физического исполнения, а также отслеживание статуса задания в JobManager. Подробности преобразований с примерами кода. 3 этапа преобразования задания Apache Flink Задание Apache Flink проходит несколько этапов перед своим физическим выполнением: сперва пользовательский код преобразуется в потоковый граф (Stream Graph);...

Оптимизация использования RocksDB и параллелизма в Apache Flink

Почему хранить состояния Flink-приложений лучше на локальных SSD-диски, а не на твердотельных накопителях с удаленной файловой системой NFS или HDFS, зачем отключать блочный кэш RocksDB и как настроить параллелизм заданий. Проблемы сохранения состояния в RocksDB и способы их решения Как мы уже упоминали здесь, key-value хранилище RocksDB является самым популярным...

Apache Flink 1.18: что нового?

24 октября 2023 года вышел очередной релиз Apache Flink. Знакомимся с главными новинками популярного Big Data фреймворка для разработки потоковых stateful-приложений: JDBC-драйвер для SQL-шлюза, хранимые процедуры для коннекторов, расширенная поддержка SQL, динамическое масштабирование с REST API и RocksDB, улучшение пакетных операций, а также другие полезные фичи Apache Flink 1.18. Улучшения...

Еще 3 рекомендации для потоковых конвейеров Apache Flink

Продолжая недавний разговор про настройку конвейеров из Flink-приложений, сегодня рассмотрим, почему важна локальность данных, как избежать узких мест в приемниках потоковых данных и чем хорош HybridSource для объединения гетерогенных источников. Обеспечьте локальность данных Хотя распределенные системы обладают большим потенциалом по сравнению с локальными, позволяя обрабатывать больше данных, вычисления не происходят...

От профилирования до загрузки классов: 3 совета по оптимизации Flink-приложений

Для чего разработчику Flink-приложения инструменты профилирования, и почему надо избегать сериализации Kryo и динамической загрузки классов. Используйте инструменты профилирования Разработка и отладка высоконагруженных приложений требует специальных средств, позволяющих понять причины их медленной работы и повысить производительность. Такой анализ работы приложение называется профилированием и выполняется с помощью специальных средств – инструментов...

Как настроить потоковый конвейер Flink-приложений по рабочей нагрузке

Зачем настраивать конфигурацию конвейера Flink-приложений в зависимости от рабочей нагрузки и как это сделать: примеры и рекомендации. 3 вида рабочей нагрузки в потоковых конвейерах Конвейер потоковой передачи событий может реализовывать различные сценарии: обратная засыпка (backfilling), когда конвейер потребляет все исторические данные, считывая все сообщения, доступные во входных источниках, пока не...

Сетевые буферы в Apache Flink: что это такое и при чем здесь контрольные точки

Как Apache Flink обеспечивает стабильно высокую пропускную способность потоковой обработки данных с помощью сетевых буферов и контрольных точек, каковы возможности и ограничения этих механизмов и какие конфигурации надо настроить для их эффективного использования. Зачем Apache Flink нужны сетевые буферы Каждая запись в Flink отправляется следующей подзадаче вместе с другими записями...

Контакты авторизированного учебного центра
«Школа Больших Данных»
Адрес:
127576, г. Москва, м. Алтуфьево, Илимская ул. 5 корпус 2, офис 319, БЦ «Бизнес-Депо»
Часы работы:
Понедельник - Пятница: 09.00 – 18.00
Остались вопросы?
Звоните нам +7 (495) 414-11-21 или отправьте сообщение через контактную форму. Также вы можете найти ответы на ваши вопросы в нашем сборнике часто задаваемых вопросов.
Оставьте сообщение, и мы перезвоним вам в течение рабочего дня
Я даю свое согласие на обработку персональных данных и соглашаюсь с политикой конфиденциальности.
Или напишите нам в соц.сетях
Поиск по сайту