Зачем Apache Flink очередной API для создания распределенных приложений с отслеживанием состояния, чем он полезен и при чем здесь Kubernetes: ликбез по Stateful Functions. Apache Flink Stateful Functions Stateful Functions в Apache Flink – это API, который упрощает создание распределенных приложений с отслеживанием состояния с помощью среды выполнения, созданной для...
Опубликованная впервые в 2016 году 1-ая версия Apache NiFi дополняется новыми минорными релизами, последним из которых стал 1.23.2, исправляющий ошибки предыдущих выпусков. Однако, в обозримом будущем ожидается мажорный релиз 2.0 со множеством новых возможностей. Разбираемся с его наиболее перспективными предложениями. ТОП-10 целей Apache NiFi 2.0 Чтобы повысить безопасность, снизить сложность...
Какие ошибки и угрозы нарушения безопасности были обнаружены в Apache AirFlow в 2023 году: обзор уязвимостей и способы их устранения. 9 уязвимостей среднего уровня серьезности В текущем году в Apache AirFlow было обнаружено 15 уязвимостей разной степени критичности. К наименее серьезным с маркировкой Medium и оценкой от 4 до 6.9...
Зачем сжимать сообщения при их публикации в Apache Kafka, как устроен механизм сжатия и какие конфигурации задавать для его эффективного использования. Сжатие сообщений в Kafka: причины использования и принципы работы Единицей параллелизма в Apache Kafka является раздел топика, куда приложение-продюсер отправляет сообщение, чтобы его мог считать потребитель, назначенный на этот...
Из-за чего приложения Flink работают быстрее Spark: разница в моделях обработки данных, управлении памятью, методах оптимизации, дизайне API и личный опыт использования. Apache Flink vs Spark: сходства и отличия Apache Spark и Flink считаются наиболее популярными фреймворками разработки распределенных приложений в области Big Data. Они достаточно похожи, что мы ранее...
Как разница между Scala и Java отражается на работе Spark-приложения, почему код на Scala работает быстрее и когда выбирать этот язык программирования для разработки приложений аналитики больших данных. Scala vs Java: ключевые отличия Хотя Apache Spark позволяет разработчику писать код на нескольких языках программирования (Scala, Java, R, Python), сам фреймворк...
Как включить сжатие данных в Greenplum, какие алгоритмы сжатия поддерживает эта MPP-СУБД и можно ли установить разные параметры сжатия для отдельных столбцов и разделов больших таблиц. Примеры SQL-запросов и рекомендацию по настройке. Как Greenplum сжимает данные: примеры настроек и SQL-запросов Эффективное сжатие данных позволяет Greenplum снижать потребление памяти и повышать...
В чем разница между потоковой передачей событий и источником событий и при чем здесь Apache Kafka: разбираемся с паттернами проектирования событийно-ориентированной архитектуры. 2 паттерна проектирования EDA-архитектуры Напомним, что сегодня для построения сложных систем, зачастую состоящих из множества взаимодействующих компонентов, и реактивно реагирующих на события внешнего мира, активно используется идея архитектуры,...
Что не так с большими языковыми моделями, как RAG-приложения расширяют возможности LLM и зачем в графовой СУБД Neo4j добавлена поддержка векторного индекса. Зачем нужны RAG-приложения: ограничения базовых LLM-сетей С появлением ChatGPT и других генеративных нейросетей, большие языковые модели (LLM, Large Language Models) стали активно применяться для решения множества бизнес-задач, связанных...
Недавно мы писали про спецификацию OpenLineage, которая позволяет обеспечить мониторинг происхождения данных в Apache AirFlow. Сегодня рассмотрим, в чем разница Data Lineage и Data Provenance, а также, как потоковый маршрутизатор Apache NiFi организует отслеживание событий генерации и изменения данных. Data Lineage vs Data Provenance Сначала рассмотрим, чем отличается Data Provenance...