PXF, Greenplum и оптимизация SQL-запросов к разным источникам данных

Сегодня продолжим разбираться с интеграционным фреймворком Greenplum и рассмотрим, как PXF реализует SQL-запросы к различным OLAP и OLTP-источникам, поддерживая разные форматы данных. Зачем создавать внешнюю таблицу для Greenplum и какие параметры при этом указывать, а также чем хороша технология оптимизации pushdown. SQL и PXF: интеграция Greenplum с внешними источниками на...

AVRO и JSON В Apache Kafka: краткий ликбез по реестру схем

Apache AVRO не случайно считается очень востребованным форматом и популярной системой сериализации данных, который активно в Kafka. Сегодня рассмотрим, как сериализуются данные в AVRO, каким образом это связано со структурами JSON и при чем здесь реестр схем Confluent. Еще раз про AVRO и сериализацию данных Apache Kafka часто используется в...

На заметку разработчику Spark-приложений: 3 ошибки PySpark и тонкости Outer Join

В этой статье для дата-аналитиков и разработчиков распределенных приложений рассмотрим несколько распространенных ошибок, которые можно сделать в PySpark-коде. Когда PySpark-код на DataFrame DSL лучше запросов Spark SQL, как изящно решить проблему длинных строк, почему пользоваться функцией cache() надо осторожно, а также откуда появляются NULL-значения при внешних соединениях потоковых таблиц. Spark...

Комбо Apache Airflow и NiFi для запланированного запуска ETL-конвейеров: практическая инженерия Big Data

Чтобы сделать наши курсы для дата-инженеров еще более полезными, сегодня рассмотрим, как объединить Apache NiFi и Airflow в рамках одного ETL-конвейера обработки данных. Читайте далее, зачем совмещать эти технологии и как сделать это наиболее эффективно, обращаясь к конечным точкам REST API процессоров NiFi из задач DAG-графа AirFlow. Apache Airflow +...

Графовая аналитика путешествий цифровых кочевников с Neo4j и Cypher

В рамках продвижения нашего нового курса по графовой аналитике больших данных в бизнес-приложениях, сегодня рассмотрим пример анализа данных о путешествиях средствами графовой СУБД Neo4j и ее языка запросов Cypher. Читайте далее, где взять данные о путешествиях цифровых кочевников и как определить самое популярное направление. Цифровые кочевники и графы их путешествий Хотя...

Arenadata LogSearch: российская enterprise-адаптация Elasticsearch

В октябре 2021 года российская компания «Аренадата Софтвер» выпустила новый продукт для аналитики больших данных под брендом Arenadata. Что такое Arenadata LogSearch (ADLS), при чем здесь Elasticsearch и какие потребности закрывает эта корпоративная адаптация open-source технологии полнотекстового поиска от отечественных разработчиков. Elasticsearch, OpenSearch и Arenadata LogSearch: близнецы или тройняшки? Среди...

Потоковая аналитика больших данных в Udemy: система отслеживания событий на Apache Hive и Kafka в AWS

Сегодня разберем кейс платформы онлайн-обучения Udemy по разработке собственной системы потоковой аналитики больших данных о событиях пользовательского поведения на Apache Kafka, Hive и сервисах Amazon. Про требования к инфраструктуре отслеживания событий и их реализацию с помощью Apache Kafka, Hive, Kubernetes, AWS S3 и EMR, а также чем AVRO лучше Protobuf....

10 вопросов на знание основ работы с Hbase: открытый интерактивный тест для начинающих изучать распределённую структуру Apache Hbase

Чтобы самостоятельное обучение по Hbase стало еще интереснее, сегодня мы предлагаем вам простой тест по основам работы с этой СУБД в этой распределенной СУБД, включая ее особенности работы и архитектуру. Тест по основам работы с СУБД Hbase для новичков Для тех, кто начинает самостоятельное обучение по Apache Hbase, мы предлагаем...

Синергия Apache Airflow и Ray для MLOps-конвейеров: инженерия Data Science

MLOps и построение конвейеров машинного обучения – одни из самых актуальных задач современной Data Science. Сегодня рассмотрим, чем совместное использование Apache Airflow и Ray полезно для дата-инженера и ML-разработчика. Читайте далее про кластерное развертывание Python-кода ML-моделей и упрощение ETL-процессов с Apache Airflow и Ray. Apache AirFlow для ML: возможности и...

Как устроен PXF Greenplum: архитектура и принципы работы

Специально для дата-инженеров, разработчиков OLAP-конвейеров и архитекторов DWH на MPP-СУБД Greenplum и Arenadata DB сегодня рассмотрим, что представляет собой PXF, из каких компонентов он состоит и как они взаимодействуют друг с другом, чтобы обеспечить параллельный высокопроизводительный доступ к данным и объединенную обработку запросов к разнородным источникам. Что PXF и зачем...

Поиск по сайту