Разделяй и властвуй: управление зависимыми DAG в Apache AirFlow

Чтобы сделать обучение дата-инженеров еще более полезным, сегодня мы рассмотрим проблему управления взаимозависимыми цепочками задач в Apache AirFlow. Читайте далее, как бразильская ИТ-компания QuintoAndar разработала промежуточный компонент Mediator на базе одноименного шаблона архитектурного проектирования ПО, чтобы облегчить взаимодействие между разными DAG’ами в конвейерах обработки больших данных. Проблема взаимозависимых DAG’ов в...

Оптимизация хранения сообщений в топиках Apache Kafka: зачем и как упаковывать, сжимать и менять форматы

Сегодня рассмотрим важную тему из курсов для разработчиков и администраторов Apache Kafka: как сэкономить место на диске и увеличить пропускную способность всей Big Data системы на базе этой платформы потоковой обработки событий. Читайте далее, зачем добавлять задержку перед отправкой сообщений брокеру, как кодеки сжатия помогут снизить затраты на облачный Kafka-кластер...

Вспомнить все: 6 сегментов памяти Apache Spark и параметры их конфигурирования

В этой статье продолжим говорить про обучение разработчиков Apache Spark и рассмотрим, какие сегменты памяти есть в этом Big Data фреймворке и как с ними работать наиболее эффективно. Читайте далее, почему процессы PySpark и SparkR потребляют внешнюю память, чем пользовательская память кучи JVM отличается от памяти хранилища и какие конфигурации...

Apache Kafka теперь без Zookeeper – новый релиз

Свершилось. 19 апреля вышел долгожданный релиз Apache Kafka за номером  2.8.0  в котором вы наконец можете начать избавляться  от использования Apache Zookeeper кластера ( см. подробности в KIP-500 и нашей статье от 30 января Зачем Apache Kafka и другие Big Data системы используют Zookeeper и чем его заменить  )  Приглашаем...

Как помочь Apache Spark SQL обрабатывать большие датасеты быстрее: 5 простых способов

Продолжая разговор про практическое обучение разработчиков Apache Spark, сегодня рассмотрим пример повышения скорости выполнения SQL-запросов к большому датафрейму. Читайте далее, как определить и исправить асимметрию распределения данных по разделам, зачем добавлять контрольные точки в длинные DAG и в чем здесь опасность, чем хороша широковещательная трансляция, для чего фильтровать данные перед...

Как устранить дубли в датасете: 5 методов для разработчика Apache Spark

На практике каждый аналитик Big Data и Data Scientist часто сталкивается с удалением дублирующихся значений в датасете. Поэтому, чтобы добавить в наши курсы по Apache Spark еще больше полезных примеров, сегодня рассмотрим 5 простых способов решения этой востребованной задачи. Читайте далее, чем distinct() отличается от dropDuplicates(), а reduceByKey() - от...

Зачем вам cURL или как быстро загрузить ответ REST API или HTTP-запроса в Apache Kafka

Дополняя наши курсы по Apache Kafka практическими примерами, сегодня рассмотрим, как загрузить в топик данные из ответа REST API или HTTP-запроса. Читайте далее, что такое cURL и какие команды нужно отправить через эту утилиту, чтобы записать в Kafka сообщения из JSON-файла. REST API, HTTP и сURL Импорт данных из REST...

От пакетов к потокам с Kafka и Flink: аналитика больших данных по пользовательским сеансам в Spotify

Сегодня рассмотрим преимущества потоковой обработки данных с Apache Kafka и Flink над пакетными Big Data технологиями в виде Hadoop, Spark и Oozie. В качестве примера разберем реальный кейс аналитики больших данных по пользовательским сеансам в музыкальном онлайн-сервисе Spotify, а также возможность замены Apache Flink на Spark Structured Streaming. От рекламы...

Можно ли заменить Apache Kafka базой данных и почему не стоит даже пытаться

Однажды мы уже разбирали, способна ли Apache Kafka заменить собой базы данных в мире Big Data. Сегодня рассмотрим обратную постановку этой задачи: можно ли реализовать постоянный обмен сообщениями в стиле Kafka с помощью СУБД. Читайте далее, что общего у Kafka с базой данных, чем они отличаются и почему попытки заменить...

Как повысить отказоустойчивость продюсера Kafka: 5 практик по настройке ТОП-10 конфигураций

В этой статье поговорим про практическое обучение Apache Kafka и рассмотрим, как сделать продюсеров еще более отказоустойчивыми, чтобы улучшить общую надежность всей Big Data системы. Читайте далее про наиболее важные конфигурации продюсеров Kafka и эффективные рекомендации по их настройке. 10 самых важных параметров продюсера Apache Kafka Из множества конфигурационных параметров...

15 советов по работе с DAG в Apache AirFlow: лучшие практики дата-инженера

Практическое обучение дата-инженеров – это не просто курсы по основам Big Data, а полезные рекомендации с реальными примерами. Поэтому сегодня рассмотрим, как работать с DAG в Apache AirFlow еще эффективнее с помощью параметров конфигурации, плагинов, меток, шаблонов, переменных и еще 10 различных инструментов. 15 лучших практики для DAG в Apache...

ОЗУ, Kafka и Logstash для решения IOPS-проблемы в кластере Apache NiFi

В рамках обучения дата-инженеров, сегодня рассмотрим проблему роста числа операций ввода-вывода в секунду (IOPS) при обработке большого количества данных в потоках Apache NiFi и способы ее решения. Читайте далее, как перемещение репозиториев NiFi с жесткого диска в оперативную память снижает IOPS, а также зачем при этом в Big Data систему...

Cloudera Manager и еще 7 инструментов администратора для мониторинга Kafka-кластера

Обновляя наши курсы для администраторов Apache Kafka, в этой статье разберем полезные средства, которые помогут вам следить за состоянием кластера, чтобы вовремя заметить существующие и предупредить возможные проблемы. Читайте далее, как отследить снижение производительности всей Big Data системы и сбои на отдельных брокерах с помощью дэшбордов в различных инструментах администрирования....

Как упростить работу с DWH и Data Lake: DBT + Apache Spark в AWS

Сегодня рассмотрим, что такое Data Build Tool, как этот ETL-инструмент связан с корпоративным хранилищем и озером данных, а также чем полезен дата-инженеру. В качестве практического примера разберем кейс подключения DBT к Apache Spark, чтобы преобразовать данные в таблице Spark SQL на Amazon Glue со схемой поверх набора файлов в AWS...

Школа Больших Данных теперь и в Telegram, присоединяйтесь!

Чтобы еще быстрее рассказывать вам свежие новости мира больших данных, а также информировать о наших курсах, акциях, статьях и прочих интересных событиях, мы запустили Telegram-канал https://t.me/BigDataSchool_ru. Подписывайтесь и получайте самые интересную и полезную информацию о технологиях Big Data, Machine Learning, Data Science, узнавайте особенности разработки распределенных приложений и администрирования кластеров...

От контекста до драйвера: что под капотом Spark-приложения

Поскольку наши курсы по Apache Spark предполагают практическое обучение с глубоким погружением в особенности разработки и настройки распределенных приложений, сегодня рассмотрим, как именно выполняются кластерные вычисления в рамках этого Big Data фреймворка. Читайте далее, из чего состоит архитектура Spark-приложения, как связаны SparkContext и SparkConf, а также зачем ограничивать размер драйвера...

5 преимуществ разделения пакетов в Apache AirFlow 2.0 или как создать свой провайдер с блэкджеком и хуками

Чтобы добавить в наши обновленные авторские курсы для дата-инженеров по Apache AirFlow еще больше интересного, сегодня продолжим разбирать полезные дополнения релиза 2.0 и поговорим, почему разделение фреймворка на пакеты делает его еще удобнее. Также рассмотрим практический пример создания общедоступного провайдера из локального Python-пакета с собственными операторами, хуками и прочими компонентами....

5 часов новых знаний и профессионального опыта от 11 экспертов: первая клиентская конференция Arenadata

Ровно через неделю, в четверг 15 апреля, с 10:00 до 15:00 МСК наш партнер компания Arenadata, разработчик отечественных решений для обработки и хранения больших данных, проводит первую клиентскую конференцию Big Data Universe #1. С докладами выступят ТОП-менеджеры и технические специалисты самой Arenadata, которые расскажут об особенностях практического применения платформы и...

3 новинки для DAG в Apache AirFlow 2.0

В поддержку наших полностью обновленных авторских курсов для инженеров данных по Apache AirFlow, сегодня рассмотрим новые способы определения DAG, которые были добавлены в релизе 2.0. Читайте далее, что под капотом TaskFlow API, как поместить задачи в TaskGroup, чем dag_policy отличается от task_policy и почему все это упрощает работу инженера Big...

Тонкости интеграции Apache Kafka с Pinot для аналитики больших данных в реальном времени

Продолжая вчерашний разговор про потоковую аналитику больших данных на Apache Kafka и Pinot, сегодня рассмотрим особенности интеграции этих систем. Читайте далее, как входные данные Kafka разделяются, реплицируются и индексируются в Pinot, каким образом выполняется обработка данных через распределенные SQL-запросы. Также разберем, почему управление памятью серверов Pinot, потребляющих данные из Kafka,...