Сложно, дорого, универсально: 3 мифа о Hadoop и их опровержения

Сегодня мы поговорим о заблуждениях насчет базового инфраструктурного понятия хранения и обработки больших данных – экосистеме Hadoop и развеем 3 самых популярных мифа об этой технологии. А также рассмотрим применение Cloudera, Hortonworks, Arenadata, MapR и HDInsight для проектов Big Data и машинного обучения (Machine Learning). Миф №1: Hadoop – это...

Выделение признаков: зачем отбирать предикторы и как это правильно сделать – готовим датасет к Data Mining и Machine Learning

Даже после очистки и нормализации данных, выборка еще не совсем готова к моделированию. Для машинного обучения (Machine Learning) нужны только те переменные, которые на самом деле влияют на итоговый результат. В этой статье мы расскажем, что такое отбор или выделение признаков (Feature Selection) и почему этот этап подготовки данных (Data...

Нормально делай – нормально будет: нормализация на практике — методы и средства Data Preparation

Мы уже рассказали, что такое нормализация данных и зачем она нужна при подготовке выборки (Data Preparation) к машинному обучению (Machine Learning) и интеллектуальному анализу данных (Data Mining). Сегодня поговорим о том, как выполняется нормализация данных: читайте в нашем материале о методах и средствах преобразования признаков (Feature Transmormation) на этапе их...

Data Preparation: полет нормальный – что такое нормализация данных и зачем она нужна

Нормализация данных – это одна из операций преобразования признаков (Feature Transformation), которая выполняется при их генерации (Feature Engineering) на этапе подготовки данных (Data Preparation). В этой статье мы расскажем, почему необходимо нормализовать значения переменных перед тем, как запустить моделирование для интеллектуального анализа данных (Data Mining). Что такое нормализация данных и чем она...

Оцифровываем текст: как превратить слова в числа для Data Mining – 5 NLP-операций Feature Extraction

Извлечение признаков (Feature Extraction) из текста – часто встречающаяся задача Data Mining, а именно этапа генерации признаков. Интеллектуальный анализ текста получил название Text Mining. В этом случае Feature Extraction относится к сфере NLP, Natural Language Processing – обработка естественного языка. Это отдельное направление искусственного интеллекта и математической лингвистики [1]. Здесь...

Это не баг, а фича: генерация признаков для Data Mining

Генерация признаков – пожалуй, самый творческий этап подготовки данных (Data Preparation) для машинного обучения (Machine Learning). Этот этап еще называют Feature Engineering. Он наступает после того, как выборка сформирована и очистка данных завершена. В этой статье мы поговорим о том, что такое признаки, какими они бывают и как Data Scientist...

Зачем нужна очистка данных для Data Mining: 10 главных проблем подготовки датасета и способы их решения

Выборка, полученная в результате первого этапа подготовки данных (Data Preparation), еще пока не пригодна для обработки алгоритмами машинного обучения, поскольку информацию необходимо очистить. Сегодня мы расскажем, что такое очистка данных (Data Cleaning) для Data Mining, зачем она нужна и как выполнять этот этап Data Preparation. Что такое очистка данных для...

Отберем то, что нужно Data Mining: как сформировать датасет для машинного обучения

Мы уже рассказывали о важности этапа подготовки данных (Data Preparation), результатом которого является обработанный набор очищенных данных, пригодных для обработки алгоритмами машинного обучения (Machine Learning). Такая выборка, называемая датасет (dataset), нужна для тренировки модели Machine Learning, чтобы обучить систему и затем использовать ее для решения реальных задач. Однако, поскольку в...

Как подготовить данные к моделированию: 5 операций Data Preparation

CRISP-DM, SEMMA и другие стандарты Data Mining не случайно выделяют подготовку данных в отдельную фазу. Data Preparation - весьма трудоемкий итеративный процесс, который занимает до 80% всех затрат ресурсов и времени в жизненном цикле Data Mining и включает следующие задачи обработки исходных («сырых») данных [1]: Выборка данных – отбор признаков...

Логистика высокой частоты: 5 примеров успешного использования RFID-технологий – интернет вещей (IoT) в России и за рубежом

Мы уже писали, как радиочастотные метки применяются в машиностроении, нефтегазовой отрасли, сельском хозяйстве и сфере безопасности. Продолжая серию публикаций об интернете вещей(IoT), мы представляем вам 5 кейсов отечественных и зарубежных компаний по использованию RFID-технологий в логистике и складском учете. RFID в легкой промышленности: международная логистика Немецкий производитель и продавец одежды,...

Поиск по сайту