Пока цифровизация воплощает в жизнь концепцию DataOps, мир Big Data вводит новую парадигму – MLOps. Читайте в нашей статье, что такое MLOps, зачем это нужно...
Чем похожи CRISP-DM и BABOK®Guide: бизнес-анализ в Data Science
Мы уже рассказывали, что цифровизация и другие масштабные проекты внедрения технологий Big Data должны обязательно сопровождаться процедурами бизнес-анализа, начиная от выявления требований на старте до...
5 причин, почему аналитика больших данных иногда выгоднее модного Data Science: взгляд со стороны бизнеса
В этой статье мы рассмотрим несколько популярных мифов о Data Science и аналитике больших данных (Big Data), разобрав, когда и почему простое использование BI-систем или...
Почему каждый Data Scientist должен быть DevOps-инженером в Big Data
С точки зрения бизнеса DevOps (DEVelopment OPerations, девопс) можно рассматривать как углубление культуры Agile для управления процессами разработки и поставки программного обеспечения с помощью методов продуктивного...
Это не баг, а фича: генерация признаков для Data Mining
Генерация признаков – пожалуй, самый творческий этап подготовки данных (Data Preparation) для машинного обучения (Machine Learning). Этот этап еще называют Feature Engineering. Он наступает после...
Зачем нужна очистка данных для Data Mining: 10 главных проблем подготовки датасета и способы их решения
Выборка, полученная в результате первого этапа подготовки данных (Data Preparation), еще пока не пригодна для обработки алгоритмами машинного обучения, поскольку информацию необходимо очистить. Сегодня мы...
Отберем то, что нужно Data Mining: как сформировать датасет для машинного обучения
Мы уже рассказывали о важности этапа подготовки данных (Data Preparation), результатом которого является обработанный набор очищенных данных, пригодных для обработки алгоритмами машинного обучения (Machine Learning)....
Как подготовить данные к моделированию: 5 операций Data Preparation
CRISP-DM, SEMMA и другие стандарты Data Mining не случайно выделяют подготовку данных в отдельную фазу. Data Preparation - весьма трудоемкий итеративный процесс, который занимает до...
Умный HR: как быстро внедрить Big Data и Machine Learning в управление человеческими ресурсами
Как быстро и эффективно внедрить Big Data и Machine Learning в прикладную область бизнеса для решения практических задач, избежав популярных ошибок Data Scientist - разбираемся...
20 проблем для Data Scientist, от которых не спасет CRISP-DM
Иван Гуз, директор по аналитике и клиентскому сервису Avito, 24.04.2018 на митапе AI Community и AI Today для специалистов по Data Science в офисе компании...