Даже после очистки и нормализации данных, выборка еще не совсем готова к моделированию. Для машинного обучения (Machine Learning) нужны только те переменные, которые на самом...
Нормально делай – нормально будет: нормализация на практике — методы и средства Data Preparation
Мы уже рассказали, что такое нормализация данных и зачем она нужна при подготовке выборки (Data Preparation) к машинному обучению (Machine Learning) и интеллектуальному анализу данных...
Data Preparation: полет нормальный – что такое нормализация данных и зачем она нужна
Нормализация данных – это одна из операций преобразования признаков (Feature Transformation), которая выполняется при их генерации (Feature Engineering) на этапе подготовки данных (Data Preparation). В этой статье...
Оцифровываем текст: как превратить слова в числа для Data Mining – 5 NLP-операций Feature Extraction
Извлечение признаков (Feature Extraction) из текста – часто встречающаяся задача Data Mining, а именно этапа генерации признаков. Интеллектуальный анализ текста получил название Text Mining. В...
Это не баг, а фича: генерация признаков для Data Mining
Генерация признаков – пожалуй, самый творческий этап подготовки данных (Data Preparation) для машинного обучения (Machine Learning). Этот этап еще называют Feature Engineering. Он наступает после...
Зачем нужна очистка данных для Data Mining: 10 главных проблем подготовки датасета и способы их решения
Выборка, полученная в результате первого этапа подготовки данных (Data Preparation), еще пока не пригодна для обработки алгоритмами машинного обучения, поскольку информацию необходимо очистить. Сегодня мы...
Отберем то, что нужно Data Mining: как сформировать датасет для машинного обучения
Мы уже рассказывали о важности этапа подготовки данных (Data Preparation), результатом которого является обработанный набор очищенных данных, пригодных для обработки алгоритмами машинного обучения (Machine Learning)....
Как подготовить данные к моделированию: 5 операций Data Preparation
CRISP-DM, SEMMA и другие стандарты Data Mining не случайно выделяют подготовку данных в отдельную фазу. Data Preparation - весьма трудоемкий итеративный процесс, который занимает до...
Зачем менеджеру язык программирования R: 7 причин освоить аналитический инструмент Big Data и Machine Learning
Мы уже рассказывали, зачем HR-специалисту большие данные, как Big Data и Machine Learning помогают PR-менеджеру в управлении корпоративной репутацией, а маркетологу в формировании персональных рекламных...
20 проблем для Data Scientist, от которых не спасет CRISP-DM
Иван Гуз, директор по аналитике и клиентскому сервису Avito, 24.04.2018 на митапе AI Community и AI Today для специалистов по Data Science в офисе компании...